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Public concern about how well U.S. schoolchildren are learning math-
ematics is abundant and growing.  The globalization of markets, the spread
of information technologies, and the premium being paid for workforce skills
all emphasize the mounting need for proficiency in mathematics.  Media
reports of inadequate teaching, poorly designed curricula, and low test scores
fuel fears that young people are deficient in the mathematical skills demanded
by society.

Such concerns are far from new.  Over a century and a half ago, Horace
Mann, secretary of the Massachusetts State Board of Education, was dismayed
to learn that Boston schoolchildren could answer only about a third of the
arithmetic questions they were asked in a survey.  “Such a result repels com-
ment,” he said.  “No friendly attempt at palliation can make it any better.  No
severity of just censure can make it any worse.”  In 1919, when part of the
survey was repeated in school districts around the country, the results for
arithmetic were even worse than they had been in 1845.  Apparently, there
has never been a time when U.S. students excelled in mathematics, even
when schools enrolled a much smaller, more select portion of the population.
Over the last half-century, however, mathematics achievement has become
entangled in urgent national issues: building military and industrial strength
during the Cold War, maintaining technological and economic advantage when
the Asian tigers roared, and most recently, strengthening public education
against political attacks.  How well U.S. students are learning mathematics
and what should be done about it are now matters for every citizen to ponder.
And one hears calls from many quarters for schools, teachers, and students to
boost their performance.

PREFACE
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xiv PREFACE

During the new math era of the mid-1950s to mid-1970s, reformers
emphasized changes in the mathematics curriculum; today’s reformers want
changes in mathematics teaching and assessment as well.  In the mathemati-
cian E.G. Begle’s laconic formulation, the problem is no longer so much teach-
ing better mathematics as it is teaching mathematics better.  Almost every-
one today agrees that elementary and middle school mathematics should not
be confined to arithmetic but should also include elements from other domains
of mathematics, such as algebra, geometry, and statistics.  There is much less
consensus, however, on how these elements should be organized and taught.
Different people urge that school mathematics be taken in different directions.

A claim used to advocate movement in one direction is that mathematics
is bound by history and culture, that students learn by creating mathematics
through their own investigations of problematic situations, and that teachers
should set up situations and then step aside so that students can learn.  A
countervailing claim is that mathematics is universal and eternal, that stu-
dents learn by absorbing clearly presented ideas and remembering them, and
that teachers should offer careful explanations followed by organized oppor-
tunities for students to connect, rehearse, and review what they have learned.
The trouble with these claims is not that one is true and the other false; it is
that both are incomplete.  They fail to capture the complexity of mathematics,
of learning, and of teaching.

Mathematics is at the same time inside and beyond culture; it is both
timely and timeless.  The theorem attributed to Pythagoras was known in
various forms in the civilizations of ancient Babylon and China, and it is still
true the world over today even though systems of geometry now exist in which
it does not hold.  Mathematics is invented, and it is discovered as well.  Stu-
dents learn it on their own, and they learn it from others, most especially
their teachers.  If students are to become proficient in mathematics, teaching
must create learning opportunities both constrained and open.  Mathematics
teaching is a difficult task under any circumstances.  It is made even more
complicated and challenging when teachers are paying attention simulta-
neously, as they should, to the manifold paths mathematics learning can take
and to the multifaceted nature of mathematics itself.

In this report, we have attempted to address the conflicts in current pro-
posals for changing school mathematics by giving a more rounded portrayal
of the mathematics children need to learn, how they learn it, and how it might
be taught to them effectively.  In coming up with that portrayal, we have
drawn on the research literature as well as our experience and judgment.
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xvPREFACE

Early on, we decided to concentrate primarily on the mathematics of num-
bers and their operations—for reasons spelled out in chapter 1.  We wanted
readers to understand that we were using the topic to illustrate what might be
done throughout the curriculum.  Nonetheless, we recognize the ease with
which some may conclude that attention equals advocacy, that we think arith-
metic must constitute the mathematics curriculum from pre-kindergarten to
eighth grade.  Such a conclusion would be wrong: The emphasis on numbers
and operations in the research literature and the even greater emphasis in
this report say nothing about what the emphasis should be in school.  We
support a comprehensive curriculum that draws on many domains of math-
ematics.

The mathematician George Pólya, poking fun at the new math textbooks
being assembled by platoons of mathematicians and teachers, once proposed
a mock word problem something like the following: If one person can write a
book in 12 months, how many months will 30 people need?  Producing the
present book in 18 months demanded something other than proportional rea-
soning; it took a superb committee of talented, dedicated people.  The com-
mittee members were truly diverse, with different sorts of expertise.  None
of us knew all the others before we began.  We brought many views, some
opposing, on the issues before us.  Yet we set to work immediately to develop
a report we could all support, eventually meeting eight times from January
1999 to June 2000.  Small groups of two or three met occasionally between
committee meetings to draft sections of the report, and we engaged in count-
less e-mail exchanges to work out thorny details.  The process worked because
each of us valued the others’ opinions, we listened to one another thoughtfully
and respectfully, and we worked hard together to reach our common goal.

No matter how many months more or less than 18 it might have taken,
none of us could have written this report alone.  Whatever merits it has lie not
only in the messages it contains but also in how it was produced.  We offer the
report in the hope that it will enable others to address the problems of school
mathematics in a more balanced, informed way than is common today and in
the same spirit we had of cooperation and mutual regard.

Jeremy Kilpatrick, Chair
Mathematics Learning Study Committee
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1

EXECUTIVE SUMMARY

Mathematics is one of humanity’s great achievements.  By enhancing the
capabilities of the human mind, mathematics has facilitated the development
of science, technology, engineering, business, and government.  Mathematics
is also an intellectual achievement of great sophistication and beauty that
epitomizes the power of deductive reasoning.  For people to participate fully
in society, they must know basic mathematics.  Citizens who cannot reason
mathematically are cut off from whole realms of human endeavor.  Innumeracy
deprives them not only of opportunity but also of competence in everyday
tasks.

The mathematics students need to learn today is not the same math-
ematics that their parents and grandparents needed to learn.  When today’s
students become adults, they will face new demands for mathematical
proficiency that school mathematics should attempt to anticipate.  Moreover,
mathematics is a realm no longer restricted to a select few.  All young Ameri-
cans must learn to think mathematically, and they must think mathematically to learn.

Adding It Up: Helping Children Learn Mathematics is about school math-
ematics from pre-kindergarten to eighth grade.  It addresses the concerns
expressed by many Americans, from prominent politicians to the people next
door, that too few students in our elementary and middle schools are success-
fully acquiring the mathematical knowledge, the skill, and the confidence
they need to use the mathematics they have learned.  Moreover, certain seg-
ments of the U.S. population are not well represented among those who do
succeed in school mathematics.

All young
Americans
must learn
to think
mathematically,
and they
must think
mathematically
to learn.
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2 ADDING IT UP

The mathematics curriculum during the preschool, elementary school,
and middle school years has many components.  But at the heart of math-
ematics in those years are concepts of number and operations with numbers—
the mathematical domain of number.   In this report, much of our attention is
given to issues associated with teaching and learning about number in pre-
kindergarten through eighth-grade mathematics.  Many controversies over
the teaching of mathematics center on the understanding and use of numbers.
The learning of concepts associated with number also has been more
thoroughly investigated than the learning of other parts of the mathematics
curriculum.  And much of the rest of the mathematics curriculum, some of
which we do address, is intertwined with number concepts.

Number is a rich, many-sided domain whose simplest forms are compre-
hended by very young children and whose far reaches are still being explored
by mathematicians.  Proficiency with numbers and numerical operations is
an important foundation for further education in mathematics and in fields
that use mathematics.  Because much of this report attends to the learning
and teaching of number, it is important to emphasize that our perspective is
considerably broader than just computation.  First, numbers and operations
are abstractions—ideas based on experience but independent of any particular
experience.  Communication about numbers, therefore, requires some form
of external representation, such as a graph or a system of notation.  The use-
fulness of numerical ideas is enhanced when students encounter and use
multiple representations for the same concept.  Second, the numbers and
operations of school mathematics are organized as number systems, such as
the whole numbers, and the regularities of each system can help students
learn with understanding.  Third, numerical computations require algo-
rithms—step-by-step procedures for performing the computations.  An algo-
rithm can be more or less useful to students depending on how it works and
how well it is understood.  And finally, the domain of number both supports
and is supported by other branches of mathematics, including algebra,
measure, space, data, and chance.  Our decision to address the domain of
number was a pragmatic one; in no way does it imply that the elementary and
middle school curriculum should be limited to arithmetic.

About This Report

The Committee on Mathematics Learning was established by the
National Research Council at the end of 1998.  It was formed at the request
of the Division of Elementary, Secondary, and Informal Education in the

Our decision
to address

the domain
of number

was a
pragmatic
one; in no
way does

it imply
that the

elementary
and middle

school
curriculum
should be
limited to

arithmetic.
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3EXECUTIVE SUMMARY

National Science Foundation’s Directorate for Education and Human
Resources and the U.S. Department of Education’s Office of Educational
Research and Improvement.  The sponsors were concerned about the short-
age of reliable information on the learning of mathematics by schoolchildren
that could be used to guide best practice in the early years of schooling.  More
specifically, the committee was given the following charge:

• To synthesize the rich and diverse research on pre-kindergarten
through eighth-grade mathematics learning.

• To provide research-based recommendations for teaching, teacher
education, and curriculum for improving student learning and to identify areas
where research is needed.

• To give advice and guidance to educators, researchers, publishers,
policy makers, and parents.

We based our conclusions in this report on a careful review of the research
literature on mathematics teaching and learning.  Many educational questions,
however, cannot be answered by research.  Choices about the mathematics
curriculum and the methods used to bring about that curriculum depend in
part on what society wants educated adults to know and be able to do.
Research can inform these decisions—for example, by demonstrating what
knowledge, skills, and abilities employees need in the workplace.  But ideas
about what children need to know also depend on value judgments based on
previous experience and convictions, and these judgments often fall outside
the domain of research.

Once the learning objectives for mathematics education have been estab-
lished, research can guide decisions about how to achieve these objectives.
In preparing this report, we sought research that is relevant to important edu-
cational issues, sound in shedding light on the questions it sets out to answer,
and generalizable in that it can be applied to circumstances beyond those of
the study itself.  We also looked for multiple lines of research that converge on
a particular point and fit well within a larger network of evidence.  Because
studies that touch on a key question and yield unequivocal findings are rare
in educational research, we have sought to point out when we have used
professional judgment and reasoned argument to make connections, note
patterns, and fill in gaps.  In the final chapter of the report, we have also
called for additional research in areas where it could improve educational
practice.
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4 ADDING IT UP

The State of School Mathematics
in the United States

One area in which the research evidence is consistent and compelling
concerns weaknesses in the mathematical performance of U.S. students.  State,
national, and international assessments conducted over the past 30 years indi-
cate that, although U.S. students may not fare badly when asked to perform
straightforward computational procedures, they tend to have a limited under-
standing of basic mathematical concepts.  They are also notably deficient in
their ability to apply mathematical skills to solve even simple problems.
Although performance in mathematics is generally low, there are signs from
national assessments that it has been improving over the past decade.  In a
number of schools and states, students’ mathematical performance is among
the best in the world.  The evidence suggests, however, that many students
are still not being given the educational opportunities they need to achieve at
high levels.

In comparison with the curricula of countries achieving well on inter-
national comparisons, the U.S. elementary and middle school mathematics
curriculum has been characterized as shallow, undemanding, and diffuse in
content coverage.  U.S. mathematics textbooks cover more topics, but more
superficially, than their counterparts in other countries do.  Despite efforts
over the last half-century to set higher learning goals for U.S. school math-
ematics and to provide new instructional materials and better assessments,
most students in grades pre-K to 8 encounter a rather shallow curriculum.
The instruction they are given continues to emphasize the execution of paper-
and-pencil skills in arithmetic through demonstrations of procedures followed
by repeated practice.

To ensure that students are meeting standards, states and districts have,
during the past decade or so, mandated a variety of assessments in math-
ematics, many with serious consequences for students, teachers, and schools.
Although intended to ensure that all students have an opportunity to learn
mathematics, some of these assessments are not well aligned with the
curriculum.  Those that were originally designed to rank order students,
schools, and districts seldom provide information that can be used to improve
instruction.

The preparation of U.S. preschool to middle school teachers often falls
far short of equipping them with the knowledge they need for helping students
develop mathematical proficiency.  Many students in grades pre-K to 8 con-
tinue to be taught by teachers who may not have appropriate certification at
that grade and who have at best a shaky grasp of mathematics.

Most
students in

grades
pre-K to 8

encounter a
rather

shallow
curriculum.
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5EXECUTIVE SUMMARY

Mathematical Proficiency

Our analyses of the mathematics to be learned, our reading of the research
in cognitive psychology and mathematics education, our experience as learners
and teachers of mathematics, and our judgment as to the mathematical knowl-
edge, understanding, and skill people need today have led us to adopt a
composite, comprehensive view of successful mathematics learning.  Recog-
nizing that no term captures completely all aspects of expertise, competence,
knowledge, and facility in mathematics, we have chosen mathematical profi-
ciency to capture what we think it means for anyone to learn mathematics
successfully.  Mathematical proficiency, as we see it, has five strands:

• conceptual understanding—comprehension of math-
ematical concepts, operations, and relations

• procedural fluency—skill in carrying out procedures
flexibly, accurately, efficiently, and appropriately

• strategic competence—ability to formulate, repre-
sent, and solve mathematical problems

• adaptive reasoning—capacity for logical thought,
reflection, explanation, and justification

• productive disposition—habitual inclination to see
mathematics as sensible, useful, and worthwhile, coupled
with a belief in diligence and one’s own efficacy.

The most important observation we make about these
five strands is that they are interwoven and interdependent.
This observation has implications for how students acquire
mathematical proficiency, how teachers develop that profi-
ciency in their students, and how teachers are educated
to achieve that goal.

The Mathematical Knowledge
Children Bring to School

Children begin learning mathematics well before they enter elementary
school.  Starting from infancy and continuing throughout the preschool period,
they develop a base of skills, concepts, and misconceptions.  At all ages, stu-
dents encounter quantitative situations outside of school from which they
learn a variety of things about number.  Their experiences include, for
example, noticing that a sister received more candies, counting the stairs
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6 ADDING IT UP

between the first and second floors of an apartment, dividing a cake so every-
one gets the same amount, and figuring out how far it is to the bus stop.

By the time children reach kindergarten, many of them can use their
counting skills to solve simple problems that call for adding, subtracting, mul-
tiplying, or dividing.  It is only when they move beyond what they under-
stand informally—to the base-10 system for teens and larger numbers, for
example—that their fluency and strategic competencies falter.  Young children
also show a remarkable ability to formulate, represent, and solve simple math-
ematical problems and to reason and explain their mathematical activities.
They are positively disposed to do and to understand mathematics when they
first encounter it.  For the preschool child, the strands of mathematical profi-
ciency are especially closely knit.

Although most U.S. children enter school with a basic understanding of
number, their knowledge is limited to small whole numbers and heavily
influenced by the context in which the numbers appear.  Furthermore, not
all children enter school with the informal understanding of number assumed
by the elementary school curriculum.

Developing Proficiency with Whole Numbers

Whole numbers are the easiest numbers to understand and use.  In the
early grades, children begin by solving numerical problems using methods
that are intuitive and concrete.  They then proceed to methods that are more
problem independent, mathematically sophisticated, and reliant on standard
symbolic notation.  Some form of this progression is seen in each operation
for both single-digit and multidigit numbers.

For most of a century, learning single-digit arithmetic—the sums and prod-
ucts of single-digit numbers and their companion differences and quotients
(e.g., 5 + 7 = 12, 12 – 5 = 7, 12 – 7 = 5 and 5 × 7 = 35, 35 ÷ 5 = 7, 35 ÷ 7 = 5)—
has been characterized in the United States as “learning basic facts,” and the
emphasis has been on memorizing those facts.  Acquiring proficiency in single-
digit arithmetic, however, involves much more than memorizing.  Even in
the early grades, students choose adaptively among different procedures,
depending on the numbers involved and the context.  We use the term basic
number combinations to highlight the relational character of this knowledge.

For addition and subtraction, many children follow a well-documented
progression of procedures.  Counting becomes abbreviated and rapid, and
students begin to use properties of arithmetic to simplify their computation.
Basic multiplication and division combinations are more of a challenge.  Learn-
ing these combinations seems to require much specific pattern-based
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knowledge that needs to be orchestrated into accessible and rapid-enough
procedures.  When given instruction that emphasizes thinking strategies,
children are able to develop the strands of proficiency in a unified manner.

Learning to use algorithms for computation with multidigit numbers is
an important part of developing mathematical proficiency.  Algorithms are
procedures that can be executed in the same way to solve a variety of prob-
lems arising from different situations and involving different numbers.
Children can and do devise algorithms for carrying out multidigit arithmetic,
using reasoning to justify their inventions and developing confidence in the
process.  A variety of instructional approaches (using physical materials, special
counting activities, and mental computation) are effective in helping students
learn multidigit arithmetic by focusing on the base-ten structure and encour-
aging students to use algorithms that they understand.  Physical materials are
not automatically meaningful to students, however, and need to be connected
to the situations being modeled.  Because of its conciseness, the base-ten
place-value system takes time to master.  Full understanding of the system,
however, is not required before students begin to learn multidigit algorithms—
the two can be developed in tandem.  The learning of whole number arith-
metic demands that attention be given to developing all strands of proficiency
in concert, emphasizing no strand at the expense of the others.

Developing Proficiency with Rational Numbers

In grades pre-K to 8, the rational numbers present a major challenge, in
part because rational numbers are represented in several ways (e.g., common
fractions and decimal fractions) and used in many ways (e.g., as parts of regions
and sets, as ratios, as quotients).  There are numerous properties for students
to learn, including the significant fact that the two numbers that compose a
common fraction (numerator and denominator) are related through multipli-
cation and division, not addition.

Students’ informal notions of partitioning, sharing, and measuring provide
a starting point for building the concept of rational number.  Young children
appreciate the idea of “fair shares,” and they can use that understanding to
partition quantities into equal parts.  In some ways, sharing can play the role
for rational numbers that counting does for whole numbers.

As with whole numbers, the written notations and spoken words used for
decimal and common fractions contribute to—or at least do not help correct—
the many kinds of errors students make with them.  Furthermore, many
students do not understand the meanings of and connections between the
various symbols for rational numbers when they are asked to compute with
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8 ADDING IT UP

them, which creates barriers to developing the strands of proficiency in an
integrated fashion.

Proportions are statements that two ratios are equal.  Understanding and
working with the relationships in a situation involving proportions is called
proportional reasoning and has been described as the capstone of elementary
school arithmetic.  Proportional reasoning is sophisticated and complex; it
needs to develop over many years.  Students need to have a solid under-
standing of proportional situations and be able to reason about them infor-
mally before formal procedures are introduced.

Developing Proficiency Beyond Number

Many students have difficulties making the transition from school arith-
metic to school algebra—with its symbolism, equation solving, and emphasis
on relationships among quantities.  Recent calls of “algebra for all” have
increased the number of students making the transition and therefore the
number encountering obstacles.  Over the past two decades, much has been
learned about the nature of students’ difficulties in algebra.  Various innova-
tive approaches to beginning algebra, many using computational tools, have
been investigated.  At the same time, modifications of elementary school
mathematics have been developed and studied that are aimed at introducing
the notions of algebra earlier.  These new approaches offer considerable prom-
ise for avoiding the difficulties many students now experience.

Just as the elementary and middle school mathematics curriculum should
prepare students for the study of algebra, so it should also include attention
to other domains of mathematics.  Students need to learn to make and inter-
pret measurements and to engage in geometric reasoning.  They also need to
gather, describe, analyze, and interpret data and to use elementary concepts
from probability.  Instruction that emphasizes more than a single strand of
proficiency has been shown to enhance students’ learning about space and
measure and shows considerable promise for helping students learn about
data and chance.

Teaching for Mathematical Proficiency

Effective teaching—teaching that fosters the development of math-
ematical proficiency over time—can take a variety of forms, each with its own
possibilities and risks.  All forms of instruction can best be examined from
the perspective of how teachers, students, and content interact in contexts to
produce teaching and learning.  The effectiveness of mathematics teaching
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and learning is a function of teachers’ knowledge and use of mathematical
content, of teachers’ attention to and work with students, and of students’
engagement in and use of mathematical tasks.  Effectiveness depends on
enactment, on the mutual and interdependent interaction of the three ele-
ments—mathematical content, teacher, students—as instruction unfolds.  The
quality of instruction depends, for example, on whether teachers select
cognitively demanding tasks, plan the lesson by elaborating the mathematics
that the students are to learn through
those tasks, and allocate sufficient
time for the students to engage in and
spend time on the tasks.  Effective
teachers have high expectations for
their students, motivate them to value
learning activities, can interact with
students with different abilities and
backgrounds, and can establish com-
munities of learners.  A teacher’s
expectations about students and the
mathematics they are able to learn can
powerfully influence the tasks the
teacher poses for the students, the
questions they are asked, the time
they have to respond, and the encour-
agement they are given—in other
words, their opportunities and moti-
vation for learning.  How the students respond to the opportunities the teacher
offers then shapes how the teacher sees their capacity and progress, as well as
the tasks they are subsequently given.

The quality of instruction also depends on how students engage with
learning tasks.  Students must link their informal knowledge and experience
to mathematical abstractions.  Manipulatives (physical objects used to repre-
sent mathematical ideas), when used well, can provide such links.  The use
of calculators can enhance students’ conceptual understanding, and practice
can help them make automatic those procedures they understand.  Although
much is known about characteristics of effective instruction, research on teach-
ing has often been restricted to describing isolated fragments of teaching and
learning rather than examining continued interactions among the teacher,
the students, and the mathematical content.
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students
mathematics

students

contexts

contexts
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Developing Proficiency in
Teaching Mathematics

Proficiency in teaching mathematics is related to effectiveness: consis-
tently helping students learn worthwhile mathematical content.  It also entails
versatility: being able to work effectively with a wide variety of students in
different environments and across a range of mathematical content.  Despite
the common myth that teaching is little more than common sense or that
some people are just born teachers, effective teaching practice can be learned.
Just as mathematical proficiency itself involves interwoven strands, teaching
for mathematical proficiency requires similarly interrelated components: con-
ceptual understanding of the core knowledge of mathematics, students, and
instructional practices needed for teaching; procedural fluency in carrying out
basic instructional routines; strategic competence in planning effective instruc-
tion and solving problems that arise while teaching; adaptive reasoning in
justifying and explaining one’s practices and in reflecting on those practices;
and a productive disposition toward mathematics, teaching, learning, and the
improvement of practice.

Effective programs of teacher preparation and professional development
help teachers understand the mathematics they teach, how their students
learn that mathematics, and how to facilitate that learning.  In these pro-
grams, teachers are not given prescriptions for practice or readymade solu-
tions to teaching problems.  Instead, they adapt what they are learning to
deal with problems that arise in their own teaching.

Recommendations

As a goal of instruction, mathematical proficiency provides a better way
to think about mathematics learning than narrower views that leave out key
features of what it means to know and be able to do mathematics.  It takes
time for proficiency to develop fully, but in every grade in school, students
can demonstrate mathematical proficiency in some form.  The overriding
premise of our work is that throughout the grades from pre-K through 8
all students can and should be mathematically proficient.

School mathematics in the United States does not now enable most stu-
dents to develop the strands of mathematical proficiency in a sound fashion.
Proficiency for all demands that fundamental changes be made concurrently
in curriculum, instructional materials, assessments, classroom practice, teacher
preparation, and professional development.  These changes will require con-
tinuing, coordinated action on the part of policy makers, teacher educators,
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11EXECUTIVE SUMMARY

teachers, and parents.  Although some readers may feel that substantial ad-
vances are already being made in reforming mathematics teaching and learn-
ing, we find real progress toward mathematical proficiency to be woefully
inadequate.

These observations lead us to five principal recommendations regarding
mathematical proficiency that reflect our vision for school mathematics.  The
full report augments these five with specific recommendations that detail
policies and practices needed if all children are to become mathematically
proficient.

• The integrated and balanced development of all five strands of
mathematical proficiency (conceptual understanding, procedural flu-
ency, strategic competence, adaptive reasoning, and productive dispo-
sition) should guide the teaching and learning of school mathematics.
Instruction should not be based on extreme positions that students learn,
on one hand, solely by internalizing what a teacher or book says or, on
the other hand, solely by inventing mathematics on their own.

One of the most serious and persistent problems facing school math-
ematics in the United States is the tendency to concentrate on one strand of
proficiency to the exclusion of the rest.  For too long, students have been the
victims of crosscurrents in mathematics instruction, as advocates of one learn-
ing goal or another have attempted to control the mathematics to be taught
and tested.  We believe that this narrow and unstable treatment of math-
ematics is, in part, responsible for the inadequate performance that U.S.
students display on national and international assessments.  Our first recom-
mendation is that these crosscurrents be resolved into an integrated, balanced
treatment of all strands of mathematical proficiency at every point in teach-
ing and learning.

Although we endorse no single approach, we contend that instruction
needs to configure the relations among teachers, students, and mathematics
in ways that promote the development of mathematical proficiency.  Under
this view, significant instructional time is devoted to developing concepts
and methods, and carefully directed practice, with feedback, is used to support
learning.  Discussions build on students’ thinking.  They attend to relation-
ships between problems and solutions and to the nature of justification and
mathematical argument.  All strands of proficiency can grow in a coordinated,
interactive fashion.
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• Teachers’ professional development should be high quality, sus-
tained, and systematically designed and deployed to help all students
develop mathematical proficiency.  Schools should support, as a central
part of teachers’ work, engagement in sustained efforts to improve their
mathematics instruction.  This support requires the provision of time
and resources.

Improving students’ learning depends on the capabilities of classroom
teachers.  Although children bring important mathematical knowledge with
them to class, most of the mathematics they know is learned in school and
depends on those who teach it to them.  Teachers cannot automatically know
how to teach more effectively.  Learning to teach well cannot be accomplished
once and for all in a preservice program; it is a career-long challenge.

As we have indicated, proficiency in mathematics teaching has parallels
to proficiency in mathematics.  Unfortunately, just as students’ opportunities
to learn mathematics effectively have been insufficient, so have teachers’
opportunities to learn more about mathematics, students’ learning and think-
ing, and their teaching practice.  Regular time needs to be provided for teach-
ers to continue their professional development, conferring with one another
about common problems and working together to develop their teaching pro-
ficiency.  They need access to resources and expertise that will assist them in
improving their instruction, including access to mathematics specialists in
every elementary school.  If the United States is serious about improving
students’ mathematics learning, it has no choice but to invest in more effec-
tive and sustained opportunities for teachers to learn.

• The coordination of curriculum, instructional materials, assess-
ment, instruction, professional development, and school organization
around the development of mathematical proficiency should drive school
improvement efforts.

Piecemeal efforts aimed at narrow learning goals have failed to improve
U.S. students’ learning.  The development of mathematical proficiency pro-
vides a broad, compelling goal around which all parts of the educational com-
munity can rally.  If even one sector of that community lags behind, it can
thwart the development of mathematical proficiency.

The school mathematics curriculum needs to be organized within and
across grades to support, in a coordinated fashion, all strands of mathematical
proficiency.  Programs at all grades should build on the informal knowledge
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children bring to school.  An integrated approach should be taken to the devel-
opment of proficiency with whole numbers, integers, and rational numbers
to ensure that all students in grades pre-K to 8 can use the numbers fluently
and flexibly to solve challenging but accessible problems.  Students should
also understand and be able to translate within and across the various common
representations for numbers.

A major focus of the study of number should be the conceptual bases for
the operations and how they relate to real situations.  For each operation, all
students should understand and be able to carry out an algorithm that is general
and efficient.  Before they get to the formal study of algebra, they already
should have had numerous experiences in representing, abstracting, and
generalizing relationships among numbers and operations with numbers.  They
should be introduced to these algebraic ways of thinking well before they are
expected to be proficient in manipulating algebraic symbols.  They also need
to learn concepts of space, measure, data, and chance in ways that link these
domains to that of number.

Materials for instruction need to develop the core content of school math-
ematics in depth and with continuity.  In addition to helping students learn,
these materials should also support teachers’ understanding of mathematical
concepts, of students’ thinking, and of effective pedagogical techniques.
Mathematics assessments need to enable and not just gauge the develop-
ment of proficiency.  All elements of curriculum, instruction, materials, and
assessment should be aligned toward common learning goals.

Every school should be organized so that the teachers are just as much
learners as the students are.  The professional development activities in which
teachers of mathematics are engaged need to be focused on mathematical
proficiency.  Just as mathematical proficiency demands the integrated, coor-
dinated development of all strands, so the enhancement of each student’s
opportunities to become proficient requires the integrated, coordinated efforts
of all parts of the educational community.

• Efforts to improve students’ mathematics learning should be
informed by scientific evidence, and their effectiveness should be evalu-
ated systematically.  Such efforts should be coordinated, continual, and
cumulative.

Steady and continuing improvements in students’ mathematics learning
can be made only if decisions about instruction are based on the best available
information.  As new, systematically collected information becomes available,
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better decisions can be made, and mathematics instruction should gradually
but steadily become more effective.  Unfortunately, too many new programs
are tried but then abandoned before their effectiveness has been well tested,
and lessons learned from program evaluations are often lost.  Without high-
quality, cumulative information, the system of school mathematics cannot
learn.

• Additional research should be undertaken on the nature, de-
velopment, and assessment of mathematical proficiency.

We are convinced that the goal of mathematical proficiency for all stu-
dents is the right goal.  Not surprisingly, however, much of the research on
mathematics teaching and learning has been conducted to address narrower
learning goals, since shifting, relatively narrow goals have been the norm.
Although we have interpreted much of that research for this report, extensive
work remains to refine and elaborate our portrayal of mathematical proficiency.
In many places, our conclusions are tentative, awaiting better evidence.

We urge researchers concerned with school mathematics to frame their
questions with a view to the goal of developing mathematical proficiency for
all students.  Evidence from such research, together with information from
evaluations of current and future programs of curriculum and professional
development, will enable the United States to make the genuine, lasting
improvements in school mathematics learning that have eluded it to date.

Conclusion

The goal of mathematical proficiency is an extremely ambitious one.  In
fact, in no country—not even those performing highest on international sur-
veys of mathematics achievement—do all students display mathematical pro-
ficiency as we have defined it in this report.  The United States will never
reach this goal by continuing to tinker with the controls of educational policy,
pushing one button at a time.  Instead, systematic modifications will need to
be made in how the teaching and learning of mathematics commonly proceed,
and new kinds of support will be required.  At all levels of the U.S. educa-
tional system, the formulation and implementation of policies demands
sustained, focused attention to school mathematics.  We hope this report will
be the basis for innovative, comprehensive, long-term policies that can enable
every student to become mathematically proficient.
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1
LOOKING AT MATHEMATICS

AND LEARNING

Children today are growing up in a world permeated by mathematics.
The technologies used in homes, schools, and the workplace are all built on
mathematical knowledge.  Many educational opportunities and good jobs
require high levels of mathematical expertise.  Mathematical topics arise in
newspaper and magazine articles, popular entertainment, and everyday con-
versation.

Mathematics is a universal, utilitarian subject—so much a part of modern
life that anyone who wishes to be a fully participating member of society
must know basic mathematics. Mathematics also has a more specialized,
esoteric, and esthetic side.  It epitomizes the beauty and power of deductive
reasoning.  Mathematics embodies the efforts made over thousands of years
by every civilization to comprehend nature and bring order to human affairs.

These dual aspects of mathematics, the practical and the theoretical, have
earned the subject a place at the center of education throughout history.  Even
simple systems for counting have to be passed on to the next generation.
Every literate society has needed people who knew how to read the heavens
and measure the earth.  Farmers have wanted to calculate crop production,
and merchants to record their transactions.

As mathematics became more formal and abstract in the hands of the
ancient Greeks, it also became enshrined among the liberal arts.  The mastery
of its forms of reasoning became a hallmark of the educated person.  Its study
was seen as bringing the discipline of logical thinking to the apprentice scholar.

Despite the value of mathematics as a model of deductive reasoning, the
teaching of mathematics has often taken quite a different form.  For centuries,
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many students have learned mathematical knowledge—whether the rudi-
ments of arithmetic computation or the complexities of geometric theorems—
without much understanding.1   Of course, many students tried to make what-
ever sense they could of procedures such as adding common fractions or
multiplying decimals.  No doubt many students noticed underlying regulari-
ties in the computations they were asked to perform.  Teachers who themselves
were skilled in mathematics might have tried to explain those regularities.
But mathematics learning has often been more a matter of memorizing than
of understanding.

Today it is vital that young people understand the mathematics they are
learning.  Whether using computer graphics on the job or spreadsheets at
home, people need to move fluently back and forth between graphs, tables
of data, and formulas.  To make good choices in the marketplace, they must
know how to spot flaws in deductive and probabilistic reasoning as well as
how to estimate the results of computations.  In a society saturated with
advanced technology, people will be called on more and more to evaluate the
relevance and validity of calculations done by calculators and more sophisti-
cated machines.  Public policy issues of critical importance hinge on math-
ematical analyses.

Citizens who cannot reason mathematically are cut off from whole realms
of human endeavor.  Innumeracy deprives them not only of opportunity but
also of competence in everyday tasks.  All young Americans must learn to think
mathematically, and they must think mathematically to learn.  The overriding
premise of our work is that throughout the grades from pre-K through 8 all
students should learn to think mathematically.

Helping all students learn to think mathematically is a new and ambitious
goal, but the circumstances of modern life demand that society embrace it.
Equal opportunity in education and in the workplace requires that math-
ematics be accessible to all learners.  The growing technological sophistica-
tion of everyday life calls for universal facility with mathematics.  For the
United States to continue its technological leadership as a nation requires
that more students pursue educational paths that enable them to become
scientists, mathematicians, and engineers.

The research over the past two decades, much of which is synthesized in
this report, convinces us that all students can learn to think mathematically.
There are instances of schools scattered throughout the country in which a
high percentage of students have high levels of achievement in mathematics.
Further, there have also been special interventions in disadvantaged schools
whereby students have made substantial progress.  More is now known about
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how children learn mathematics and the kinds of teaching that supports that
learning.  Research continues to expand our understanding of the teaching-
learning process.  All of this taken together makes us believe that our goal is
in large measure achievable.

Mathematics and Reading

A comparison of mathematics with reading leads to several important
observations.  First, competence in both domains is important in determin-
ing children’s later educational and occupational prospects.  Children who
fail to develop a high level of skill in either one are precluded from the most
interesting and rewarding careers.  As a recent report on reading from the
National Research Council put it, “To be employable in the modern economy,
high school graduates need to be more than merely literate.  They must be
able to read challenging material, to perform sophisticated computations, and
to solve problems independently.”2

Second, there are important similarities as well as differences in the prob-
lems children face in developing competence in reading and mathematics.
Understanding the common features of reading development and math-
ematical development is as important as understanding the special character-
istics of learning in each domain.

Finally, international comparisons suggest that U.S. schools have been
relatively successful in developing skilled reading, with improvements in both
instruction and achievement occurring in a large number of schools.3   Unfor-
tunately, the same cannot be said of mathematics.  International comparisons
discussed in the next chapter suggest that by eighth grade the mathematics
performance of U.S. children is well below that of other industrialized coun-
tries.  Furthermore, this performance has been relatively low in a variety of
comparisons conducted at intervals over several decades.  The organizational
and instructional factors that U.S. schools have used in developing skilled
reading performance may be equally important in improving the learning of
mathematics.  Learning to read and developing mathematical proficiency both
rest on a foundation of concepts and skills that are acquired by many children
before they leave kindergarten.  In the case of reading, children are expected
to enter school with a basic understanding of the sound structure of their
native language, a conscious awareness of the units (phonemes) that are
represented by an alphabetic writing system, and skill in handling basic lan-
guage concepts.  Likewise in mathematics, students should possess a toolkit
of basic mathematical concepts and skills when they enter first grade.  (These
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are reviewed in chapter 5.)  In both reading and mathematics, some children
enter school without the knowledge and experience that school instruction
presumes they possess.  In both domains, there is evidence that early inter-
vention can prevent full-blown problems in school.4

For both reading and mathematics, children’s performance at the end of
elementary school is an important predictor of their ultimate educational suc-
cess.  If they have not mastered certain basic skills, they can expect problems
throughout their schooling and later.  Research on reading indicates that all
but a very small number of children can learn to read proficiently, though
they may learn at different rates and may require different amounts and types
of instructional support.  Furthermore, experiences in pre-kindergarten and
the early elementary grades serve as a crucial foundation for students’ emerging
proficiency.  Similar observations can be made for mathematics.

For example, nearly all second graders might be expected to make a use-
ful drawing of the situation portrayed in an arithmetic word problem as a step
toward solving it.  Representing numbers by means of a drawing is a task that
few children find difficult.  Other tasks, however, depend much more heavily
on children’s knowledge and experience.  For example, in Roman numerals,
the value of V is five regardless of where it is located in the numeral, whether
IV, VI, or VII.  The Hindu-Arabic numerals used in everyday life are differ-
ent; a digit’s value depends on the place it occupies.  For example, the 5 in
115 denotes five, whereas in 151 it denotes fifty, and in 511, five hundred.
Also, a special symbol, 0, is used to hold a place that would otherwise be
unoccupied.  Although adults may view this place-value system as simple
and straightforward, it is actually quite sophisticated and challenging to learn
(see chapters 5 and 6).

To make progress in school mathematics, children must understand
Hindu-Arabic numerals and be able to use them fluently.  But the children
in, say, a second-grade class can be expected to differ considerably in the rate
at which they grasp place value.  It is a complex system of representation that
functions almost like a foreign language that a child is learning to use and
simultaneously using to learn other things.  Much of school mathematics has
this mutually dependent quality.  Abstractions at one level are used to develop
abstractions at a higher level, and abstractions at a higher level are used to
gain insights into abstractions at a lower level.

To ensure that students having reading difficulties get prompt and effec-
tive assistance outside the regular school program, the reading community
has developed a variety of intervention programs designed to address the
problems students are having and to bring them back rapidly into the regular
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program.5   Although there is much “remediation” done as part of school math-
ematics instruction in grades K to 8 and beyond, there are not nearly so many
supplementary interventions in mathematics as there are in reading.  There
is very little in the way of “mathematics recovery” that provides early targeted
enrichment in mathematics to help students overcome special difficulties.

One difference between reading and mathematics is that, after a certain
point, reading requires little explicit instruction: Once children have acquired
basic principles and skills for reading, they use those skills in the service of
other activities, to learn about history, literature, or mathematics, for example.
Their skills can always be polished and instruction given on interpreting a
text, but they need no further explanations and demonstrations of reading by
others.  Furthermore, they practice and develop their reading throughout their
lives, both inside and outside of school.  As is the case for reading, students
develop some basic concepts and practices in mathematics outside of school,
but a new and unfamiliar topic in mathematics—say, the division of fractions—
usually cannot be fully grasped without some assistance from a text or a teacher.

Reading uses a core set of representations.  In U.S. schools, the English
alphabetic writing system, once learned, enables the student to read and
decode any English sentence, although of course not necessarily to under-
stand its meaning.  Graphs, pictures, and signs also need to be read, but the
core symbols are the alphabet.

Mathematics, in contrast, has many types and levels of representation.
In fact, mathematics can be said to be about levels of representation, which
build on one another as the mathematical ideas become more abstract.  For
example, the increasing focus on algebra during the school years builds facil-
ity with more abstract levels of representation.

Another characteristic of learning to read is the vast variation among chil-
dren in their exposure to literature outside of school, as well as in the amount
of time they spend reading.  Studies on the development of reading6  have
shown that variations in children’s reading skill are associated with large dif-
ferences in reading experience.  Children at the 80th percentile in reading
level were estimated to average more than 20 times as much reading per day
as children at the 20th percentile.7

Similar data are not available for mathematics, but differences in the
amount of time spent doing mathematics are likely to be less than for read-
ing.  This suggests that direct school-based instruction may play a larger part
in most children’s mathematical experience than it does in their reading
experience.  If so, the consequences of good or poor mathematics instruction
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may have an even greater effect on children’s proficiency than is the case
with reading.

An important recent change in American education is the increased
emphasis on ensuring that all children achieve a basic level of competence in
reading during the course of elementary school.  Success in school also depends
on establishing good mathematical competence in the early elementary grades,
yet mathematics instruction has not received the same sustained emphasis.
Schools generally lack a mathematics specialist corresponding to the reading
specialists who provide instruction and assist children having difficulties with
the subject.  Many school districts have revised their schedules and their
curriculum programs to ensure that adequate reading instruction is given in
the elementary grades; mathematics instruction has yet to receive similar
attention.  The recommendations we give at the end of this report attempt to
take into account the progress made in homes and at school in achieving read-
ing proficiency.

Looking at Mathematics

The mathematics to which U.S. schoolchildren are exposed from pre-
school through eighth grade has many aspects.  However, at the heart of pre-
school, elementary school, and middle school mathematics is the set of
concepts associated with the term number.8   Children learn to count, and they
learn to keep track of their counting by writing numerals for the natural num-
bers.  They learn to add, subtract, multiply, and divide whole numbers, and
later in elementary school they learn to perform these same operations with
common fractions and decimal fractions.  They use numbers in measuring a
variety of quantities, including the lengths, areas, and volumes of geometric
figures.  From various sources, children collect data that they learn to represent
and analyze using numerical methods.  The study of algebra begins as they
observe how numbers form systems and as they generalize number patterns.

We have focused much of this report on the domain of number.  Most of
the controversy over how and what mathematics should be taught in elemen-
tary and middle school revolves around number.  Should children learn com-
putational methods before they understand the concepts involved?  Should
they be introduced to standard algorithms for arithmetic computation, or
should they be encouraged to develop their own algorithms first?  How much
time should be spent learning long division or how to add common fractions?
Should decimals be introduced before or after fractions?  How proficient do
children need to be at paper-and-pencil arithmetic before they are taught
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algebra or geometry?  Such questions are controversial partly because they
touch on the third R—arithmetic—that parents want their children to master,
and also because they deal with topics on which reformers have taken some
of their strongest stands in opposition to current practice.

Furthermore, much more research has been conducted in the domain of
number than in most other areas of the mathematics curriculum.  For most
controversial questions involving number, at least some related research is
available, and many of these questions have been studied extensively.

Our attention to number and operations is certainly not meant to imply
that the elementary and middle school curriculum is or should be limited to
number.  Mathematics is a broad discipline, and children need to learn about
its many aspects.  Although the amount of research that is available is less, we
have also reviewed what is known from research about how students develop
proficiency with some of the central concepts of measurement, geometry,
descriptive statistics, and probability.  Further, we have reviewed the research
on beginning algebra learning.  Nevertheless, our review of the research on
mathematics learning paints an incomplete picture of the nature of math-
ematics, even elementary and middle school mathematics.  Many facets of
the discipline are not covered or not covered adequately by the research or
our review.  Further, our review does not capture the many connections both
between various topics in mathematics and between mathematics and its uses
in the world around us.  Hence, in describing what is known about how chil-
dren learn mathematics, we are not indirectly prescribing what mathematics
children should learn.

Nature of the Evidence

For every generation of students, the mathematics curriculum and the
methods used to deliver that curriculum are products of many choices.  Some
of these choices reflect the fact that the volume of knowledge in any subject
greatly exceeds the time available for teaching it.  Decisions always must be
made as to what topics to teach and how much time to spend on them.

Choices about the teaching and learning of mathematics also depend on
what society wants educated adults to know.  Questions of what needs to be
taught are essentially questions of what knowledge is most preferred.  Research
can inform these decisions—for example, studies of modern workplaces can
reveal what mathematics employees most need to know.9   However, ideas
about what children today need to know also depend on value judgments
based on previous experience and convictions, and these judgments often
fall outside the domain of research.
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Once choices have been made regarding the mathematics that students
should know, the goals for instruction can be framed.  The available evidence
from research can be used to analyze the feasibility of the goals as well as to
contribute to decisions about how to help children achieve them.  The task
then becomes, first, to identify the research that can be used to inform these
analyses and decisions and, second, to figure out how best to use that research.

The experience that people know and understand best is their own.  To
establish policies for school mathematics, however, it is essential to look
beyond one’s own experience to the evidence obtained through a systematic
examination of what others have seen and reported.

Some of this evidence is analytical or conceptual, such as analyses of math-
ematical representations and strategies.  This research might describe and
categorize mathematical situations, analyze attributes of mathematical repre-
sentations, or design conceptual supports to increase student learning.  The
value of this research depends on the strength of its analytical framework and
its accessibility to others.

Other evidence is more empirical.  The essence of empirical research is
that evidence has been gathered and analyzed in a systematic, focused way
so as to address a clearly formulated question.  Researchers make public the
assumptions they have made and the methods they have used to gather and
analyze their data.  They explain how their conclusions follow from a careful
analysis of those data.  They report their methods and findings in a way that
makes informed critique possible.  In many cases—though not all—adher-
ence to these methods allows others to repeat their work.

Some empirical studies are largely descriptive.  They can illuminate how
learning occurs under various conditions, suggest what the learner brings to
the teaching situation, or describe how the learner understands what is being
taught.  Some studies portray relationships.  They can suggest how differences
in conditions under which learning occurs might be related to differences in
what is learned.  Other studies are experimental.  Through the manipulation
of learning conditions, they can suggest how changes in those conditions might
cause changes in learning.

Whether a study is a tightly controlled experiment or an observation of a
single child’s performance, it can be of high or low quality.  Box 1-1 describes
several determinants of quality in research.  In turn, the quality of the evi-
dence determines the level of confidence with which a conclusion, observa-
tion, or recommendation is made.

In addition, no single study can provide conclusive evidence on broad
educational issues.  It is therefore necessary to look at as many studies as
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Box 1-1

The Quality of Research Studies

Several indicators of quality must be evaluated in assessing studies of
mathematics education.  This report is based on research that meets standards
of relevance, soundness, and generalizability.

Relevance

A research study is relevant if it addresses or produces data that speak to
any of a number of components of mathematics learning.  The teaching and
learning of mathematics involve both desired goals and various mental
processes.  These goals and processes include the content to be learned,
materials for teaching, activities undertaken by teachers and students to
promote learning, and assessment of what has been learned.  Teaching and
learning also take place in a social context ranging from the classroom to the
nation as a whole.  Teaching and learning depend not only on teachers and
students but also on support from a variety of enablers: policy makers, teacher
educators, publishers, researchers, administrators, and others.

A relevant study of mathematics learning might, for example, lead to a
sharper understanding of desired learning processes and outcomes.  It might
reveal features of good practice or evaluate tradeoffs among various
educational alternatives.

Soundness

The soundness of a research study concerns the extent to which the study
supplied the data needed to address the research question.  A study’s
soundness therefore depends on the suitability of the methods used to achieve
the results obtained.  Were the groups of participants adequate in size and
composition, or were they biased or limited in some fashion?  Did the methods
generate credible, reliable, and valid data?  Were the methods specified so
that they could be repeated?  Was the data analysis appropriate to the methods,
carefully conducted, replicable, and penetrating?  Was the data presentation
clear and complete?  Were the conclusions warranted by the results and
appropriately qualified?

Generalizability

The generalizability of a study concerns the extent to which its findings
can be applied to circumstances beyond those of the study itself.  Was the
class typical in size and composition?  Were the time allocated to mathematics
and the materials and equipment used in the study characteristic of today’s
mathematics instruction?  Did the conditions of the study depart from those
of an ordinary classroom?  Were the teachers or students somehow anomalous?
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possible that are relevant to a particular question.  The confidence with which
an observation, conclusion, or recommendation is made is increased when all
the relevant evidence supports the same point.  This feature of convergence
is reinforced when the evidence has been collected in different places, under
different circumstances, and by different researchers working independently.

In particular, findings should stand up across different groups of students
and teachers, and ideally they should have been obtained using different
methods for gathering data.  Findings also should fit well within a larger
network of evidence that makes good common and theoretical sense.  Deter-
mining the degree of convergence in existing evidence demands discrimina-
tion and judgment.  It cannot be ascertained simply by tallying studies.

One problem in weighing the evidence on a given issue in education is
that a fully convergent database that speaks directly to the issue and yields
unequivocal findings is seldom, if ever, available.  The findings from experi-
mental studies of mathematics learning often conflict.  Data from non-
experimental studies of relationships generally are ambiguous with respect
to causality.  Descriptive data can help frame an issue but usually do not
address the question of which processes might lead to which learning out-
comes.  Ostensibly comparable studies can differ in key features, making it
difficult to decide whether the data are really comparable.  Much of the evi-
dence is still in the form of demonstrations that selected children can learn
certain topics in certain ways, and large-scale studies have not yet been done.

All these factors require that the research evidence be interpreted.  Argu-
ments and recommendations have to be constructed by drawing on profes-
sional judgment.  Inductive reasoning must be used to make connections
among studies, note patterns, fill in gaps, and attempt to explain why contra-
dictory findings should be ignored or downplayed.  We have sought to identify
in this report conclusions that depend on such interpretations of the available
evidence.

The Role of Research in Improving
School Mathematics

A premise of this report is that sound research can help guide the design
of effective mathematics instruction.  Yet research cannot be the only basis
for making instructional decisions in mathematics.  First, as we stated earlier,
research, by itself, cannot tell educators which of their learning goals are most
important or how they should set priorities.  Only after such goals have been
established can research generate information to help educators decide
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whether goals are feasible and, if so, how to accomplish them.  In short,
instructional decisions, as well as the research supporting them, must be guided
by values.

Second, decisions about how to help students reach learning goals can
never be made with absolute certainty.  As the famous American psychologist
William James noted at the end of the nineteenth century, psychology’s
description of “the elements of the mental machine . . . and their workings”10

does not translate directly into a prescription for educational practice.  James
warned: “You make a great, a very great mistake, if you think that psychology,
being the science of the mind’s laws, is something from which you can deduce
definite programmes and schemes and methods of instruction for immediate
schoolroom use.”11   Education is an applied field: no matter what the state of
theoretical knowledge from psychology or elsewhere, the conditions of prac-
tice make the success of any procedure contingent.  Just as a doctor cannot be
100 percent sure that this operation will cure that patient, or an engineer that
this design cannot fail, so a teacher cannot know exactly what approach will
work with a particular student or class.  Decisions about procedures can be
made with greater confidence when high-quality empirical evidence is avail-
able, but decisions about educational practice always require judgment,
experience, and reasoned argument, as well as evidence.

Third, the research base for mathematics learning is diverse in the methods
used and contains diverse kinds of results.  For example, observational
methods—including clinical interviews with students—are faithful to actual
conditions and environments.  But they may have trouble controlling irrelevant
variables that might have been responsible for the results.  It can be challenging
to draw scientifically sound conclusions from a selected set of observations.
In contrast, experimental methods—including studies comparing an experi-
mental and control group—establish stronger bases for drawing conclusions,
although even these conclusions have important limitations and qualifica-
tions.  Experimental control is a challenge because the classroom teaching of
mathematics constitutes a system of mutually dependent elements that can-
not easily be disentangled so that each element can be controlled.  Experi-
mental rigor often requires narrowing one’s focus to a single feature of an
instructional method or to a limited amount of mathematical content.  Further-
more, evidence that an instructional method produced a certain result in a
controlled situation does not guarantee that it would produce the same result
in a situation when, for example, different mathematical content were being
taught or the students had different backgrounds and experience.  There are
pros and cons for each methodological approach, and we believe that the great-
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est progress is made when together they offer converging evidence, that is, a
coherent picture of how mathematics learning occurs.  The interpretation
and use of research always require a search for commonalities in evidence
from diverse sources.

Finally, most published studies in education confirm the predictions made
by the investigators.  Information obtained from research therefore is par-
ticularly useful when it goes beyond the sought-after effects.  The interpre-
tation and use of such information require an examination of the conditions
under which the effects were obtained and other possible effects.  For example,
the students in the groups under investigation may have met other learning
goals than those targeted by the instructional methods.

In summary, high-quality research should play a central role in any effort
to improve mathematics learning.  That research can never provide prescrip-
tions, but it can be used to help guide skilled teachers in crafting methods
that will work in their particular circumstances.  For many important issues in
mathematics education, the body of evidence is simply too thin at present to
warrant a comprehensive synthesis.  Where convergent evidence is not avail-
able, we have attempted in this report to suggest the sorts of evidence that
would be needed for good inferences to be drawn.

About This Report

The Committee on Mathematics Learning was created at the request of
the Division of Elementary, Secondary, and Informal Education in the National
Science Foundation’s Directorate for Education and Human Resources and
the U.S. Department of Education’s Office of Educational Research and
Improvement.  The sponsors were concerned about the shortage of reliable
information on the learning of mathematics by schoolchildren that could be
used to guide best practice in the early years of schooling.

The charge to the committee lists three goals:

1. To synthesize the rich and diverse research on pre-kindergarten
through eighth-grade mathematics learning.

2. To provide research-based recommendations for teaching, teacher
education, and curriculum for improving student learning and to identify areas
where research is needed.

3. To give advice and guidance to educators, researchers, publishers,
policy makers, and parents.
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Additionally, the committee was charged with describing the context of
the study with respect to what is meant by successful mathematics learning,
what areas of mathematics are important as foundations in grades pre-K-8 for
building continued learning, and the nature of evidence and the role of research
in influencing and informing education practice, programs, and policies.

The goals for the study cover a broad grade span and a number of different
facets of mathematics education—learning, teaching, teacher education, and
curriculum.  Further, the report is to provide guidance to a diverse audience.
The complexity of the task and the time constraints imposed led the com-
mittee to make some judicious choices and decisions.  First, as indicated earlier,
we chose to focus primarily on the domain of number in order to make our
task manageable and to present findings on the area of mathematics of most
interest to our audience.  Second, because we could not assume a common
background, necessary background had to be included in the report.  Finally,
we decided to limit the detail reported on individual studies in order to make
the report more accessible.

To meets its charge, the committee conducted an extensive examination
of the research literature relevant to the learning of mathematics in the pre-
kindergarten through eighth-grade years.  We did not review other bodies of
literature that have an impact on learning such as textbooks, curriculum
projects, assessments, and standards documents.  In reviewing the research,
we asked ourselves what promising changes in practice the evidence suggests
and what else needs to be known to improve practice.  We then concluded
how teaching, curricula, and teacher education should change to improve
mathematics learning in these critical years.

In chapter 2, we describe the current status of mathematics curricula,
teaching practices, assessments, and student achievement.  In response to
the charge to describe what areas of mathematics are important, chapter 3
outlines the domain of number and discusses what it means to learn about
number in the pre-kindergarten to eighth-grade years.  Chapter 4 details the
strands of what we refer to as “mathematical proficiency,” which we have
established as what is meant by successful mathematics learning in the
elementary school and middle school years.

Chapters 5, 6, 7, and 8 then present a portrait of mathematics learning
that spans the grade levels considered in this report.  Chapter 5 considers
what students learn outside school and bring with them to the formal study of
mathematics.  Chapter 6 describes the process by which students acquire
mathematical proficiency with whole numbers, and chapter 7 addresses pro-
ficiency with other number systems.  Chapter 8 describes the process by which
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students achieve proficiency in domains other than number, including
beginning algebra, measurement and geometry, and statistics and probability.

Chapters 9 and 10 focus on the teaching of mathematics.  Chapter 9
describes what we know from research about teaching for mathematical pro-
ficiency.  Chapter 10 discusses what it means to be a proficient teacher of
mathematics and describes the kinds of experiences teachers need to develop
this proficiency.

Finally, chapter 11 presents the committee’s recommendations for teach-
ing practices, curricula, and teacher education, offering some suggestions for
parents, educators, and others.  Chapter 11 also recommends the various types
of research needed if both practice and policy are to be improved.

Notes
1. Butts, 1955, p. 454; Cubberley, 1920, pp. 17, 235; Kouba and Wearne, 2000; Thorndike,

1922.
2. Snow, Burns, and Griffin, 1998, p. 20.  The case for critical reading skill and literacy by

adolescence is addressed by Moore, Bean, Birdyshaw, and Rycik, 1999.
3. Binkley and Williams, 1996; Elley, 1992.
4. Fuson, Smith, and Lo Cicero, 1997; Griffin, Case, and Siegler, 1994; Snow, Burns, and

Griffin, 1998.
5. One well-known program is called Reading Recovery (see Snow, Burns, and Griffin,

1998, pp. 255–258), which is designed for the lowest fifth of a first-grade class.  In that
program, the teacher, who has received extensive instruction in the reading process
and its implications for teaching, notes an individual child’s literacy strategies and
knowledge and then engages the child in a structured series of activities.  Each child
is tutored individually for a half hour a day for up to 20 weeks.

6. Wagner and Stanovich, 1996.
7. Anderson, Wilson, and Fielding, 1988.
8. See chapter 2 for data on the level of instructional emphasis fourth- and eighth-grade

teachers reported giving to number and operations.
9. See, for example, the SCANS study (U.S. Department of Labor, Secretary’s

Commission on Achieving Necessary Skills, 1991).
10. James, 1899/1958, p. 26.
11. James, 1899/1958, p. 23.
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2
THE STATE OF SCHOOL MATHEMATICS

IN THE UNITED STATES

The U.S. system for teaching children mathematics is large, is complex,
and has numerous components.  Children’s mathematical achievement, how-
ever, is ultimately determined and constrained by the opportunities they have
had to learn.  Those opportunities are determined by several major compo-
nents of school mathematics.  The curriculum contains learning goals spelling
out the mathematics to be studied.  It also includes instructional programs and
materials that organize the mathematical content, together with assessments
for determining what has been learned.  In addition, and of primary impor-
tance, it is through teaching that students encounter the mathematical content
afforded by the curriculum.

In every country, the complex system of school mathematics is situated
in a cultural matrix.  Mathematics teaching is not the same in the United
States as in, say, Japan or Germany,1  and the curricula are different as well.2

Countries differ in such global characteristics as the centralization of educa-
tional policies, the organization and types of schools, and the success of efforts
to provide universal access to education.  The status of teachers in the society,
the composition and mobility of the student population, and the extent to
which external examinations determine one’s life chances all constrain the
ways in which mathematics is taught and learned.  Countries also differ in
more specific ways: parents, teachers, and students have different beliefs about
the value of hard work and the importance of mathematics for one’s educa-
tion; whether and how students are grouped for mathematics instruction varies;
mathematics textbooks are written, distributed, and used in diverse ways;
and there is variation in the prevalence of tutors or special schools to coach
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students for mathematics tests.  Each country provides a unique setting for
school mathematics, one that very much determines how students are taught,
what they learn, how successful they are, and how satisfied society is with the
products of the system.

Education in the United States is marked by a diverse, mobile popula-
tion of students and teachers, a variety of organizational structures, and minimal
centralized control over policies and practices.  The U.S. system of school
mathematics has evolved over several centuries in accordance with these char-
acteristics.  Not only do the components of the U.S. system differ from those
of other countries, but they are organized and operate differently.  To under-
stand the possibilities for improving children’s learning of mathematics, one
needs a sense of how the elements of U.S. school mathematics currently
function.

In the past half century, a number of research studies have examined
differences in the mathematics learned by students in various educational
systems.  Some of these studies have also looked at various features of the
systems that might help researchers understand and interpret the pattern of
results.  To date, the most comprehensive study to be analyzed in detail has
been the Third International Mathematics and Science Study (TIMSS), which
was conducted in the mid-1990s.  Over 40 countries participated in TIMSS.
Tests in science and mathematics, as well as questionnaires about their studies
and their beliefs, were given to students midway through elementary school
(grade 4 in the United States), midway through lower secondary school (U.S.
grade 8), and at the end of upper secondary school (U.S. grade 12).  Question-
naires about beliefs, practices, and policies were also given to these students’
teachers and school administrators.  Unique features of TIMSS included an
extensive examination of textbooks and curriculum guides from many of the
participating countries, a video study of eighth-grade mathematics classes in
three countries, and case studies of educational policies in those three
countries.

The results from TIMSS have been widely reported in the media, catch-
ing the attention of politicians, policy makers, and the general public.  Many
people have compared various practices, programs, and policies in the United
States with those of high-achieving countries.  Such comparisons are inter-
esting but at best can only be suggestive of the sources of achievement differ-
ences.  TIMSS provides no evidence that a single practice—say, the amount
of homework assigned, the particular textbook used, or how periods of math-
ematics instruction are arranged during the school day—is responsible for
higher mathematics test scores in one country than in another.  The countries
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participating in TIMSS vary in many respects—educationally, socially, eco-
nomically, historically, culturally—and in each of those respects, they vary
along many different dimensions.  In the absence of more evidence than
TIMSS can provide, one cannot select one practice and claim that if it were
changed to be more like that of high-scoring countries, scores in the United
States would rise.3   Studies like TIMSS can at best generate conjectures that
need to be tested in the complex system of school mathematics that exists in
any county.  In this report, we use data from TIMSS and other international
studies to help describe practice and performance in the United States—
sometimes in contrast to that of other countries but never assuming a simple
causal relation between a specific practice and performance.

This chapter is intended primarily to give an overall picture of U.S. math-
ematics education, describing the experiences and achievement of most
students.  But it should be emphasized that U.S. education is quite diverse,
partly because of an unequal distribution of needs and resources, and partly
because of the principle of local control.  Thus, this chapter also attempts to
describe that diversity, particularly with respect to student achievement.

In this chapter, we first take up in turn four central elements of school
mathematics—learning goals, instructional programs and materials, assess-
ment, and teaching—discussing the current status of each in the United States.
We then examine the preparation and professional development of U.S.
teachers of mathematics.  Finally, we look at a major indicator of the health of
the whole system, student achievement results, both across time and inter-
nationally.

Learning Goals

The U.S. Constitution leaves to the separate states the responsibility for
public education.  State and local boards of education have the authority to
determine the mathematics that students learn as well as the conditions under
which they learn it.  Many state boards of education have created curriculum
standards and frameworks, and some have specified criteria that educational
materials (principally textbooks) must meet if they are to be approved.  Thus,
each state can, in principle, specify quite different goals for learning math-
ematics at each grade level, and each local district can make adjustments as
long as they fall within the state guidelines.

A major effort to set comprehensive learning goals for school mathemat-
ics at the national level was undertaken in 1989 by the National Council of
Teachers of Mathematics (NCTM) with the release of Curriculum and Evalu-
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ation Standards for School Mathematics.4   The document outlined and illus-
trated goals in the form of standards to be met by school mathematics pro-
grams.  It called for a broadened view of mathematics and its teaching and
learning, emphasizing the development of students’ “mathematical power”
alongside more traditional skill and content goals.  The NCTM later produced
Professional Standards for Teaching Mathematics5  and Assessment Standards for
School Mathematics.6   Beginning in 1995, it embarked on a process to revise all
three documents, resulting in Principles and Standards for School Mathematics,7

which was released in April 2000.
Although none of the NCTM documents established national standards

for school mathematics in an official sense, much of the activity in U.S. math-
ematics education since 1989 has been based on or informed by the ideas in
those documents.  Many school mathematics textbooks claim to be aligned
with the NCTM standards, and 13 curriculum projects were funded by the
National Science Foundation to produce materials for elementary, middle, or
high school that embodied the ideas expressed in the standards documents.8

The NCTM standards of 1989 launched the so-called standards movement,
with standards for other school subjects appearing over the following decade.9

In 1994 the reauthorization of Title I of the Elementary and Secondary Edu-
cation Act furthered boosted the movement.  Title I provides supplemental
financial assistance to local educational agencies to improve teaching and learn-
ing in schools with high concentrations of children from low-income families.
The reauthorization “requires states to develop challenging standards for
performance and assessments that measure student performance against the
standards.”10   It should also be noted that A Nation at Risk, America 2000, and
Goals 2000 (under Presidents Reagan, Bush, and Clinton, respectively) all
called for higher, measurable standards in education.11

As of 1999, 49 states reported having content standards in mathematics
and several states were in the process of revising their standards.12   These
standards (sometimes called curriculum frameworks) describe what students
should know and be able to do in mathematics.  Most of the state standards
reflect the 1989 NCTM standards and either repeated verbatim or were
adapted from the document.  Early versions of these state standards were
organized into grade clusters (e.g., grades K-4), but some states (e.g., California,
Texas, North Carolina, and Virginia) have recently developed grade-by-grade
standards.13

Current state standards and curriculum frameworks vary considerably in
their specificity, difficulty, and character, as illustrated by the widely divergent
ratings they received in three reviews conducted by the American Federa-
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tion of Teachers, the Fordham Foundation, and the Council for Basic Educa-
tion.14   The conflicting reports have created confusion among parents, teachers,
and policy makers alike.  According to one analysis of the reviews:

While . . . multiple analyses of state standards are better than no
analyses, the grade differentials among the three reports are confound-
ing—enough so to make state leaders either throw up their hands in
utter bewilderment or embrace a high mark and ignore the others.
Both responses threaten to defeat the very purpose of the reports.
For example, Florida received a D from one appraiser and the equiva-
lent of an A from another in mathematics.  In both English and math-
ematics, Michigan received an F from one appraiser and a B-plus
from another.15

Often missing from the public discussion of such reports are the processes
and criteria that gave rise to the ratings, which has only added to the confusion.

Some caveats about standards deserve mention.  First, most groups
charged with developing standards for a school subject have strong expecta-
tions for learning in that subject.  They may spend more time devising the
standards than checking the feasibility of achieving them in the time avail-
able for learning.  One analysis of standards for 14 subjects found that it would
take nine additional years of schooling to achieve them all.16   Thus, it is
important that states and districts avoid long lists that are not feasible and
that would contribute to an unfocused and shallow mathematics curriculum.

Second, when grade bands (e.g., grades pre-K–2) are used in specifying
standards, it is important to clarify that each goal does not have to be addressed
at every grade in a band.  Such redundancy again contributes to the dissipa-
tion of learning efforts and interferes with the acquisition of proficiency.

Third, states and districts need to decide what they will do when students
do not meet grade-level goals.  Children enter school with quite different
levels of mathematical experience and knowledge.  Some need additional
learning time and support for learning if they are to meet the goals.  As schools
shift to standards-based mathematics curricula for grades pre-K to 8 with chal-
lenging grade-level goals, thorny questions arise as to whether and how spe-
cial accommodations will be made for some students and what criteria will be
imposed for promotion to the next grade.

A recent comparative analysis of mathematics assessments given to U.S.
and Japanese eighth graders revealed some striking differences in the expec-
tations held for each group, with much lower expectations in the United States.
The author concluded by pointing to the need for grade-level goals:
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To achieve the coherence and focus observed in the Japanese mate-
rials, the Curriculum and Evaluation Standards for School Mathematics
need to be further extended to provide grade level guidance about
focus and primary activities for given years.  This step to achieve-
ment and delivery standards for school mathematics is curricularly
achievable within the framework outlined by the NCTM content
standards.  Whether it is politically acceptable or systematically
implementable are larger and more volatile questions.17

On balance, we see the efforts made since 1989 to develop standards for
teaching and learning mathematics as worthwhile.  Many schools have been
led to rethink their mathematics programs, and many teachers to reflect on
their practice.  Nonetheless, the fragmentation of these standards, their mul-
tiple sources, and the limited conceptual frameworks on which they rest have
not resulted in a coherent, well-articulated, widely accepted set of learning
goals for U.S. school mathematics that would detail what students at each
grade should know and be able to do.  Part of our purpose in this report is to
present a conceptual framework for school mathematics that could be used to
move the goal-setting process forward.

Instructional Programs and Materials

Learning goals are inert until they are translated into specific programs
and materials for instruction.  What is actually taught in classrooms is strongly
influenced by the available textbooks because most teachers use textbooks
as their primary instructional materials.18   As of 1998, 12 states—including
the very large markets of California and Texas—had policies in which the
state either chose the materials that students would use or drew up a list of
textbooks and materials from which districts had to choose, though sometimes
only if they wanted to use state funds for the purchase.  Another seven states
recommended materials for use.19

Surveys of U.S. teachers have consistently shown that nearly all their
instructional time is structured around textbooks or other commercially pro-
duced materials, even though teachers vary substantially in the extent to which
they follow a book’s organization and suggested activities.20   In 1980 one
researcher maintained that the chalkboard and printed textbooks were the
predominant instructional media in mathematics classes,21  a verdict substan-
tiated by recent data from the National Assessment of Educational Progress
(NAEP).  Responding to a questionnaire in 1996, teachers of three fifths of
the fourth graders and of almost three fourths of the eighth graders in the
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NAEP sample said that they used the mathematics textbook almost every
day.22   Observational studies of elementary school classrooms, however, reveal
that at least some teachers pick and choose from the mathematics textbook
even as they follow its core content.23

The American textbook system is notable for being heavily market driven.
In that market, publishers must contend with multiple and sometimes
contradictory specifications:

If we lived in a country with one national curriculum, then textbook
publishers could compete with each other in the effort to produce a
book that would best mirror that one curriculum.  But we are not
such a country.  Instead, we have dozens of powerful ministries of
education issuing undisciplined lists of particulars that publishers must
include in the textbooks.  Since publishers must sell in as many juris-
dictions as possible in order to turn a profit, their books must incor-
porate this melange of test-oriented trivia, pedagogical faddism, and
inconsistent social messages.24

To be sold nationwide, a textbook needs to include all the topics from the
standards and curriculum frameworks of at least those influential states that
officially adopt lists of approved materials.  Consequently, the major U.S.
school mathematics textbooks, which collectively constitute a de facto national
curriculum, are bulky, address many different topics, and explore few topics
in depth.

In comparison with the curricula of countries achieving well on inter-
national comparisons, the U.S. elementary and middle school mathematics
curriculum has been characterized as superficial, “underachieving,” and diffuse
in content coverage.25   Successful countries tend to select a few critical topics
for each grade and then devote enough time to developing each topic for
students to master it.  Rather than returning to the same topics the following
year, they select new, more advanced topics and develop those in depth.  In
the United States, not a single topic in the grade pre-K to 8 mathematics
curriculum is seen as the province of one grade, to be learned there once and
for all.  Instead, topics such as multidigit computations are distributed over
several years, with one digit added to the numbers each year.  Students
invariably spend considerable time on topics they encountered in the previous
grade.26   At the beginning of each year and of each new topic, numerous
lessons are devoted to teaching what was not learned or was learned inad-
equately the year before.  Because the curriculum is consequently so crowded,
depth is seldom achieved, and mastery is deferred.  Not surprisingly, inter-
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national curriculum analyses have found that U.S. mathematics textbooks
cover more topics, but more superficially, than do their counterparts in other
countries.27

The massive amount of review created by the inadvertent de facto cur-
riculum set by textbooks wastes learning time and may bore those students
who have already mastered the content.  Such constant review is also counter-
productive.  It is much easier to help students build correct mathematical
methods at the start than to correct errors that have been learned and practiced
for a year or more.  As the following chapters show, the lack of concentrated
attention to core topics militates against powerful learning.

Further attributes of this de facto curriculum also are problematic.  For
example, even with their supplementary materials, many textbooks fail to
discuss student strategies or progressions in student thinking.  They also fre-
quently omit explanations of mathematical processes.  Further, decorative
artwork with little connection to textbook content sometimes confuses or
distracts students.28   Research indicates that students can learn more math-
ematics than is usually offered them in the early grades, so the U.S. elemen-
tary school mathematics curriculum could be made more challenging.  If the
curriculum of the early grades were more ambitious, and if instruction were
focused on mastery of topics rather than unwarranted review, teachers of the
middle and upper grades could concentrate on teaching core grade-level topics
more thoroughly.

The short timelines between the formulation of state learning goals and
the selection of textbooks create a textbook production schedule that seldom
permits both consultation of research about student learning and field testing
followed by revision based on actual use in schools.29   Most students today
are using materials that were produced under heavy (perceived or actual)
market constraints.  In contrast, some recent school curriculum development
projects that were supported by the National Science Foundation built
research and pilot testing into their design.

An expert panel convened by the Department of Education recently
evaluated materials from these NSF-funded projects as well as from other
programs.  The panel labeled some curriculum programs as “exemplary” and
others as “promising” based on a review process that examined evidence of
the programs’ effectiveness.30   Almost immediately, the panel’s conclusions
were called into question.31   Just as with ratings of standards, evaluations of
curriculum materials have led to divergent ratings depending on the group
doing the evaluating.32
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In some countries, including England, France, Hong Kong, Singapore,
and the Netherlands, there are permanent national centers or institutes that
conduct multi-year research and curriculum development efforts in school
mathematics.  In the United States, the government has funded both a research
center for mathematics learning at a single institution and projects to develop
materials for teaching and learning mathematics at a number of other institu-
tions.33   Typically, the curriculum development programs have required, as
part of the project, both pilot testing of the materials while they are under
development and the collection of evidence on the effectiveness of the
materials, once developed.  In some cases, the evaluation studies have been
only perfunctory and the evidence gathered of poor quality.  In others the
support has resulted in sustained research-based curriculum development
that systematically uses evidence as to what U.S. students can learn.34   Such
a development program can be interactive, with improved learning materials
yielding improved student learning that, in turn, yields improved and even-
more-ambitious learning materials.

Developing teachers’ capacity to acquire and use good instructional
materials is also a problem.  Textbook selection processes can be overwhelm-
ing.  Committee members usually do not have time to examine carefully the
continuity of treatment of topics or the depth and clarity of the conceptual
development facilitated by the materials.  Instead, their focus is often on
superficial features such as the appearance of the materials and whether all
goals on a checklist are addressed.  The problems created by checklists are
especially keen in states and local districts with large numbers of specified
special criteria.  Failure to meet even a few of these criteria can eliminate an
otherwise strong program.35

The methods used in the United States in the twentieth century for pro-
ducing school mathematics textbooks and for choosing which textbooks and
other materials to use are not sufficient for the goals of the twenty-first cen-
tury.  The nation must develop a greater capacity for producing high-quality
materials and for using effectively those that are produced.  In subsequent
chapters, we cite research on children’s learning that can guide that produc-
tion and use.

Assessments

In general, assessments of children’s mathematics learning fall into two
categories: internal and external.  Internal assessments are those used by
teachers in monitoring and evaluating their students’ progress and in making
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instructional decisions.  Such assessments range from the informal questions
a teacher might ask about a student’s work to an end-of-year examination.
They arise from the teaching-learning process in the classroom.  External
assessments, in contrast, come from outside, from projects gathering com-
parative research data or mandated by state or local districts as part of their
evaluation programs.

Relative to the vast literature on external assessments and their results,
little up-to-date information is available on how U.S. teachers conduct internal
assessments in mathematics, particularly those activities such as classroom
questioning, quizzes, projects, and informal observations.  Even less atten-
tion appears to have been paid to how teachers’ assessments might help
improve mathematics learning.  According to one analysis, “Aside from teacher-
made classroom tests, the integration of assessment and learning as an inter-
acting system has been too little explored.”36

As part of the 1996 NAEP mathematics assessment, teachers responded
to several questions about their testing practices.37   Fourth graders were usu-
ally tested in mathematics once or twice a month, with about a third being
tested once or twice a week.  More frequent testing was associated with lower
achievement.38   Eighth graders were somewhat more likely to be tested
weekly.  At both grades, teachers appeared to be responding to calls arising
from the standards movement for less multiple-choice testing in favor of tests
on which students supply written responses.39   Multiple-choice testing is still
prevalent, however, stimulated perhaps by the increased number of such tests
provided by publishers to accompany their textbooks.  Two thirds of fourth
and eighth graders had teachers who reported that they used multiple-choice
tests to assess students’ progress at least once or twice a year, most as often as
once or twice a month.40   In part, teachers are attempting to prepare students
for external assessments by using multiple-choice items on their own tests.

The form of multiple-choice test items appears not to be as big a prob-
lem as the nature of the items and the conditions under which they are typi-
cally administered in the United States.  An examination given to a national
sample of eighth graders in Japan as part of a Special Study on Essential Skills
in Mathematics was composed entirely of multiple-choice items, yet it was
judged substantially more challenging than the 1992 NAEP mathematics
assessment given to U.S. eighth graders, which contained both multiple-choice
items and items on which students had to write either a brief or lengthy
response.41   The difference was that the Japanese exam contained about half
as many items as the U.S. exam; the items were longer, demanded more read-
ing and analysis, and were more focused on strategies for problem solving.
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Exhortations to change assessments, whether internal or external, clearly need
to focus on more than just item format.  In the remainder of this section, we
examine current external assessment practices and results.

In recent years, largely because of language in the reauthorization of Title
I, many states have designed and implemented their own assessments, usu-
ally aligned with newly developed state standards or curriculum frameworks.
Many of these assessments are intended to have high stakes.  They may have
financial or other consequences for districts, schools, teachers, or individual
students.  In some cases, promotion or even a high school diploma may depend
on a student achieving a passing score.  As of 1998, 48 states and the District
of Columbia had instituted testing programs, typically at grades 4, 8, and 11,
and usually in mathematics, language arts, science, and technology.42

Many states report the results of their high-stakes assessments by school
or by district to identify places that are most in need of improvement.  The
states’ responses to those results vary.  Some states have the authority to close,
take over, or “reconstitute” a failing school.  To date, only a few states have
ever used such sanctions.43   Florida awards additional funds to schools that
perform near the bottom and also to schools that perform near the top.44   When
schools or districts with poor results do not show sufficiently rapid improve-
ment, some states revoke accreditation, close down the school, seize control
of the school, or grant vouchers so that students may choose to enroll elsewhere.

Currently, 19 states require that in order to graduate from high school,
students must pass a mandated assessment, and several other states are phasing
in such a requirement.45   In TIMSS, countries with rigorous assessments at
the end of secondary education outperformed other countries at a comparable
level of economic development; such assessments, however, were probably
not the most important determinant of achievement levels.46   In response to
calls for an end to social promotion, some states and districts have begun
requiring grade-level mastery tests for promotion, typically in grades 4 and 8.
Interestingly, there is some evidence to suggest that there is an almost inverse
relationship between statewide testing policies and students’ mathematics
achievement:

Among the 12 highest-scoring states in 8th grade mathematics in 1996,
. . . none had mandatory statewide testing programs in place during
the 1980s or early 1990s.  Only two of the top 12 states in the 4th
grade mathematics had statewide programs prior to 1995.  By contrast,
among the 12 lowest-scoring states, . . . 10 had extensive student test-
ing programs in place prior to 1990, some of which were associated
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with highly specified state curricula and an extensive menu of rewards
and sanctions.47

Of course, this relationship does not imply that simply easing statewide test
policies would improve achievement.

To give teachers, students, parents, and other caregivers sufficient time
to prepare for high-stakes assessments, states typically administer them for
several years before the consequences take effect.  During these trial runs,
the failure rates are sometimes alarmingly high.  In Arizona, for example,
only 1 in 10 sophomores passed the mathematics test first given in the spring
of 1999.  That same spring, only 7% of Virginia schools were able to achieve a
70% passing rate, which was to become the condition for accreditation in 2007.
In response to these results, some states have begun to relax their expecta-
tions, reconsider the test, or withdraw it altogether.  Wisconsin, for example,
yielded to pressure from parents and withdrew its high school graduation
test.  Massachusetts and New York set lower passing scores for their exams.48

Most states report the level of student results on their assessments by
setting so-called cut scores to define categories with such labels as advanced,
proficient, needs improvement, and failing,49  terms similar to those used in NAEP:
advanced, proficient, and basic.  When results on state assessments are com-
pared with the state results in NAEP, the proportions of students reaching
the proficient level are often higher.50   Some researchers, politicians, and policy
makers have concluded from this discrepancy that most state tests do not
reflect sufficiently high expectations.51   Others argue instead that minimum
competence and high expectations are different goals that cannot be mea-
sured by the same assessment and certainly not with the same cut scores.
Thus, the results appear discrepant because the same categories are used to
describe performance on assessments with very different goals.

Many states and school districts use standardized tests52  (which may or
may not coincide with the state assessments discussed above) to assess how
their students are achieving.  Commercially published standardized math-
ematics achievement tests are quite variable in the topics they cover and in
the proportion of these topics emphasized at each grade level.53   The tests
frequently are not aligned with the teaching materials used in a district or
even with the goals of the district.  This misalignment further dilutes teach-
ing efforts, as teachers must add to their long list of goals coverage of the
major topics emphasized on a specific standardized test.

Standardized tests can have other negative consequences.  The word stan-
dardized is likely to carry certain connotations: that such a test is more objec-
tive than other instruments, that it contains mostly grade-level items, that it
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was developed or sanctioned by experts in the domain, that it reflects impor-
tant learning goals in a balanced way, and that it represents and assesses what
students know about the content that the state or district has prescribed for
that grade level.  In fact, many standardized tests have few or none of these
characteristics.54

Most standardized tests might be called “comparison” tests because their
function is to rank order students, schools, and districts or to compare them
with another group that was selected as typical.  Items are chosen to range
widely in difficulty in part to disperse students’ scores.  That range allows for
half the students to be classified as “below average” and the other half as
“above average.”  The tests do not include many items that only a few students
get right or that only a few get wrong, because such items do not help distin-
guish among students.55   The omission of these items may mean that some
important aspects of mathematics that students have or have not learned are
not tested.  For tests designed for making comparisons, however, the omission
is necessary.

In contrast, if the purpose of a test is to assess whether students have met
specific goals, test designers can choose items to span the important math-
ematics to be learned.  When the goal is to determine students’ proficiency
with grade-level topics, the cut scores are then set to indicate various levels
of proficiency.  Students and teachers know where to aim their efforts, and
students can study for the test with the goals in mind.  If the students have
learned well, large proportions of them can achieve high proficiency, and there
is no need to label half of them as below average (or even to rank them at all).
Standardized tests have traditionally been kept secret so that questions can
be reused.  In recent years, this practice has come under fire.  If students are
to reach publicly accepted standards, the argument goes, they need to know
what type of performance will be expected of them.56   They should have an
opportunity to learn the mathematical content and processes on which they
will be examined.  At the same time, they need to become familiar with the
instructions, the organization of the assessment, and the format of the items,
so that such nonmathematical considerations do not prevent them from
showing what they know.  Legally and ethically, when the stakes are high,
students should be provided with sample assessments or at least sample items
that are representative of the actual assessments.57

The movement over the past four decades to hold schools accountable
for students’ performance has resulted in increased high-stakes testing of
“minimum competency” in mathematics and other subjects.  Many states
give competency tests at several grade levels, including high school exit exams.
Performance on the mathematics portions of such tests has often been con-
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siderably below what was anticipated or desired.  Many districts meanwhile
have continued to use standardized comparison tests that were not necessarily
aligned with their textbooks, their state goals, or their state competency tests.
The combination of standardized comparison tests and state competency tests
can overwhelm teachers, who have to prepare students for two kinds of high-
stakes tests about which they often know very little.

State competency tests in mathematics are often given first at a grade
level at which many students are already far behind and likely to have diffi-
culty catching up.  If such tests are to be used, they need to be accompanied
in earlier grades—and throughout all grades—by other assessments that would
enable teachers to make their instruction more effective.  In particular, such
assessments could identify students who are not achieving and need special
help so that they do not fall further behind.  This linking of assessment to
instructional efforts is consistent with the recent NRC report Testing, Teaching,
and Learning,58  which focuses on recommendations for Title I students.  Two
of the central recommendations of that report concerning assessment and
instruction are as follows:

• Teachers should administer assessments frequently and regularly
in classrooms for the purpose of monitoring individual students’ perfor-
mance and adapting instruction to improve their performance.  (p. 47)

• Teachers should monitor the progress of individual children in
grades pre-K-3 to improve the quality and appropriateness of
instruction.  Such assessments should be conducted at multiple points
in time, in children’s natural settings, and should use direct assess-
ments, portfolios, checklists, and other work sampling devices.  The
assessments should measure all domains of children’s development,
particularly social development, reading, and mathematics.  (p. 53)

The current national focus on standards-based testing is a definite
improvement on the past focus on comparison testing.  But standards-based
assessment needs to be accompanied by a clear set of grade-level goals so
that teachers, parents, and the whole community can work together to help
all children in a school achieve those goals.  (And the goals need to aim at
more than skills, as we argue in chapter 4.)  Continuing informal assessments
throughout the year can help teachers adjust their teaching and identify stu-
dents who need additional help.  More such help might be available if money
formerly spent on comparison testing were reallocated to help children learn.
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Teaching

Even with high standards, exemplary textbooks, and powerful assess-
ments, what really matters for mathematics learning are the interactions that
take place in classrooms.  The literature on mathematics education, perhaps
surprisingly, contains little reliable data about those interactions.  Most of the
available research evidence consists of reports by teachers of their practice,
but an increasing amount comes from systematic observations of lessons.  The
discussion in this section addresses both types of evidence.

Reported Practices

The emphasis in U.S. elementary and middle school mathematics teach-
ing seems to be predominantly on number and operations.  Teachers of 93%
of the fourth graders and 88% of the eighth graders in the 1996 NAEP math-
ematics assessment reported that they gave the topic “a lot” of instructional
emphasis.59   At grade 8, algebra also received a lot of emphasis (for 57% of the
students), but that was the only other curriculum strand to receive much atten-
tion.  Fourth-grade teachers reported giving considerable emphasis to facts,
concepts, skills, and procedures (over 90% of the students got “a lot”), with
less emphasis on reasoning processes (52%) and even less attention to com-
munication (38%).  Eighth-grade teachers’ responses followed a similar pattern,
with somewhat less attention to facts, concepts, skills, and procedures (79%).
In a recent study comparing schools participating in state initiatives in math-
ematics and science with schools not involved in such initiatives, elementary
school teachers in the initiatives schools spent significantly more time than
their counterparts on reasoning and problem-solving activities.60

For decades, mathematics educators have been exhorting teachers to allow
children to use manipulatives—counting blocks, geometric shapes, and other
objects—to support their thinking.  The use of manipulatives, however, is
not a common classroom practice.  In 1996, teachers of 27% of the fourth
graders in NAEP reported that their students used counting blocks and geo-
metric shapes at least once a week; 74% used them at least once a month,
leaving 26% who seldom if ever used them.  Teachers of 8% of the eighth
graders said that their students used such manipulatives at least once a week,
and teachers of more than half the students reported essentially no use.  Data
were not available on how this use was connected to mathematical ideas,
words, and notations.

Materials such as rulers and calculators are apparently used much more
frequently than manipulatives in mathematics teaching.  Teachers of almost
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half the fourth graders in the 1996 NAEP sample reported that their students
used rulers or related tools at least once a week, and teachers of 95% of the
fourth graders reported frequencies of at least once a month.  Teachers of a
quarter of the eighth graders reported that their students used objects such as
rulers at least once a week, and teachers of almost 80% said their students
used them at least once a month.

Eighth-grade teachers reported considerably greater use of calculators in
their teaching than fourth-grade teachers did.  Teachers of over half of the
eighth graders in the 1996 NAEP sample reported that their students used
calculators almost every day, and teachers of less than a tenth claimed never
or hardly ever to use calculators.  Teachers of less than a third of the fourth
graders, in contrast, said their students used a calculator in class at least once
a week, teachers of only 5% said almost every day, and teachers of more than
a quarter said never or hardly ever.  Eighth graders enrolled in algebra were
reported to use calculators more frequently than those in prealgebra or eighth-
grade mathematics, and at both grades 4 and 8 the reported frequency of
calculator use increased from 1992 to 1996.

The teachers of about a quarter of the 1996 NAEP sample at both grades
4 and 8 reported that their students worked in small groups or with a partner
almost every day, and teachers of more than 90% of the students had them
working that way at least once a month.  Teachers of about a third of each
sample said that at least once a week their students wrote a few sentences
about how to solve a mathematics problem, but teachers of another third said
their students never or hardly ever wrote up their solutions.  Few students at
either grade wrote reports or worked on projects more than once a week, and
teachers of about two thirds said their students hardly ever did project work.
For nearly half of the eighth graders and more than a third of the fourth graders,
their teachers reported that almost every day they had students discuss
solutions with one another, and teachers of almost all students held such dis-
cussions at least once a month.  According to these survey data, standards-
based efforts to increase attention to realistic mathematics problems may be
having some effect:

In 1996, substantial proportions of students from grades 4 and 8 were
working and discussing mathematics that reflected real-life situations
at least “once or twice a week.”  Teachers of 29 percent of fourth-
grade students reported that their students did this “almost every
day,” while teachers of 45 percent reported that their students did
this “once or twice a week.”
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The percentages were similar for eighth-grade students: teachers of
27 percent reported that students worked and discussed mathematics
problems that reflected real-life situations “almost every day,” and
teachers of 47 percent reported working and discussing these types
of problems “once or twice a week.”61

As part of the 1996 NAEP, teachers were asked about their knowledge of
the 1989 NCTM standards.  The teachers of 46% of the fourth graders pro-
fessed little or no knowledge of the standards, and only 5% of the fourth
graders had teachers who indicated that they were very knowledgeable.  In
contrast, only 19% of the eighth graders had teachers who claimed to have
little or no knowledge of the standards, and 16% had teachers claiming to be
very knowledgeable.62

The accuracy of teachers’ self-reports of their practice can of course be
questioned.  Teachers have their own meanings for what they do.  For example,
in a recent survey of 85 elementary school teachers in two districts, 93% said
that they were using cooperative learning, a practice in which students are
grouped for instruction, are assigned roles in the group, work together on a
task, are each assessed on their performance, are each held accountable for
contributing to the work, and, in some versions, are taught skills for working
together, promote each other’s contributions, and work collectively to improve
their effectiveness.63   Interviews with 21 of the teachers who had indicated
they were using cooperative learning (17 of whom said they used it for math-
ematics) revealed that all but one had their own version of the practice, which
they distinguished from the “more formal” version.  Primarily, they almost
never attempted to make sure that individual students were held account-
able for contributing to the work.  From their own descriptions, the majority
of the teachers were using a form of cooperative learning that differed sub-
stantially from the forms described in the literature by the researchers who
had developed the practice.  Similar discrepancies have been documented
between teachers’ reports of implementation of other reform practices and
the observation of those practices in their video lessons.64

Overall, teachers’ reports give at best a mixed picture of mathematics
teaching in U.S. elementary and middle schools: heavy attention to tradi-
tional content accompanied by modest and possibly idiosyncratic use of
practices endorsed by advocates of standards-based instruction.  Regardless
of how teachers are interpreting these practices, most do appear to be at least
somewhat aware of recent proposals for change.  Self-report data address iso-
lated practices only, however; observational data are needed if one is to get a
sense of how lessons are organized and conducted.
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Observed Lessons

For more than a century, observers have been looking into classrooms
and emerging with descriptions of how U.S. teachers teach.65   What is most
striking in these observers’ reports is that the core of teaching—the way in
which the teacher and students interact about the subject being taught—has
changed very little over that time.  The commonest form of teaching in U.S.
schools has been called recitation.66   Recitation means that the teacher leads
the class of students through the lesson material by asking questions that can
be answered with brief responses, often one word.  The teacher acknowl-
edges and evaluates each response, usually as right or wrong, and asks the
next question.  The cycle of question, response, and acknowledgment con-
tinues, often at a quick pace, until the material for the day has been reviewed.
New material is presented by the teacher through telling or demonstrating.
After the recitation part of the lesson, the students often are asked to work
independently on the day’s assignment, practicing skills that were demon-
strated or reviewed earlier.  U.S. readers will recognize this pattern from their
own school experience because it has been popular in all parts of the country,
for teaching all school subjects.

Although there are some differences in the way different subjects are
taught,67  the description of recitation teaching is consistent with more recent
descriptions of mathematics lessons.  In the mid-1970s, the National Science
Foundation funded a set of studies on classroom practice, including a national
survey of teaching practices68  and a series of case studies.69   After observing a
number of mathematics classrooms, one researcher said:

In all math classes I visited, the sequence of activities was the same.
First, answers were given for the previous day’s assignment.  The
more difficult problems were worked by the teacher or a student at
the chalkboard.  A brief explanation, sometimes none at all, was given
of the new material, and problems were assigned for the next day.
The remainder of the class was devoted to working on the home-
work while the teacher moved about the room answering questions.
The most noticeable thing about math classes was the repetition of
this routine.70

The findings for the full set of case studies are not easily summarized
because there were some substantial differences between teachers, but a com-
missioned synthesis noted that the most common pattern in mathematics
classrooms was “extensive teacher-directed explanation and questioning
followed by student seatwork on paper-and-pencil assignments.”71
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At about the same time, the National Advisory Committee on Math-
ematical Education (NACOME) commissioned a study of elementary school
mathematics instruction.  Their report was entirely consistent with that of
the National Science Foundation studies.  In fact, NACOME expressed some
concern that teaching had changed so little over the previous 10 to 15 years, a
time of concentrated curriculum development in mathematics.  The
NACOME report’s concluding remarks reviewed the committee’s findings:

The median [elementary school] classroom is self-contained.  The
mathematics period is about 43 minutes long, and about half of this
time is written work.  A single text is used in whole-class instruction.
The text is followed fairly closely. . . .  Teachers are essentially teach-
ing the same way they were taught in school.72

The most extensive look into mathematics classrooms around the United
States was conducted in 1995: the video study component of TIMSS.73   The
TIMSS Video Study marked the first time that a nationally representative
sample of classrooms was selected for study and that a sample of lessons was
videotaped.  The videotapes revealed classroom instruction that resembled
the instruction described in earlier reports.  Apparently, U.S. teachers are con-
tinuing to teach mathematics in the same way their predecessors taught.

The TIMSS videotapes allowed researchers to take a much more detailed
look at common classroom practice than any earlier study had provided, and
the availability of tapes from Germany and Japan permitted some contrasting
descriptions.  The full sample included 81 eighth-grade mathematics lessons
in the United States, 100 such lessons in Germany, and 50 lessons in Japan.

Reports from parents and in the popular press as to how U.S. children are
being taught today suggest that some teachers have their students investigat-
ing mathematical ideas almost entirely on their own, whereas others are care-
fully explaining those ideas and providing lots of practice.  It is tempting to
conclude, therefore, that methods of teaching mathematics are highly vari-
able within the United States.  In fact, the TIMSS Video Study clearly shows
that such differences are quite small compared with the substantial differ-
ences that exist between countries.  Each country appears to have its own
dominant style of mathematics teaching.74

In the videotaped lessons from the United States, a typical lesson begins
by checking homework or engaging in a warm-up activity.  The teacher then
presents a few sample problems and demonstrates how to solve them.  This
part of the lesson is often conducted in recitation fashion, with the teacher
asking fill-in-the-blank questions as the procedures are shown.  Seatwork is
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assigned, and students complete exercises like those they have been shown.
The teacher often ends the lesson by checking some of the seatwork prob-
lems and assigning similar problems for homework.

Typical lessons in Germany and Japan contain many of the same compo-
nents, but the components are arranged differently and aim at different goals.
For example, most lessons in all three countries include an early segment in
which the teacher presents one or more problems for the day.  But that activity
has a different purpose in each country.  In Germany, presenting the problem
initiates a relatively lengthy development of advanced solution techniques.
The teacher guides, through questioning, the process of solving the problem,
which is often quite challenging.  In Japan, presenting the carefully chosen
problem sets the stage for the students to work, individually and in groups,
on developing solution procedures that they then report to the class.  About
half the time, the procedures are expected to be original constructions.  As
described above, presenting problems in the United States leads to students
practicing procedures that have been demonstrated by the teacher.

The different patterns of teaching generated a set of findings that illus-
trated the dramatic differences in classroom practice across the three countries.
For example, 78% of the mathematical topics in the U.S. lessons contain con-
cepts that were stated by the teacher rather than developed through examples
or explanations.  In contrast, that practice occurred for 23% of the concepts in
Germany and only 17% in Japan; at least some of the concepts from the
remaining topics in these countries were developed and elaborated in some
way.75   Moreover, the quality of the mathematical content of the U.S. lessons
was independently rated as being much lower than that of the German and
Japanese lessons.76

The descriptions from the TIMSS Video Study match other reports of
classroom practice in mathematics.  For example, a 1998 report to the Califor-
nia State Board of Education summarizes the conventional method of math-
ematics teaching in the United States, often used as the control treatment in
experimental studies of new teaching approaches.77   The summary divides
the conventional method into two phases.  In the first phase, the teacher
demonstrates, often working one to four problems, and the students observe
passively; in the second phase, the students work independently, with the
teacher possibly monitoring their work and giving feedback.

That description might easily have been written to describe U.S. math-
ematics lessons in 1900.  Mathematics teaching in the United States clearly
has not changed a great deal in a century.  It continues to emphasize the
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execution of paper-and-pencil skills through demonstrations of procedures
and repeated practice.

Teacher Preparation, Certification, and
Professional Development

A bachelor’s degree and a teaching certificate are required to teach in
most public schools in the United States.  Teaching certificates are granted
by states, usually based on the completion of specific undergraduate
coursework and field experience in schools.  Some states also require that
candidates pass an examination.  A teaching certificate from one state is occa-
sionally honored across state lines; states without reciprocity of certification
commonly offer a provisional certificate to out-of-state teachers until they
have met all the requirements.  Some states also offer alternative routes to
certification for prospective teachers with a bachelor’s degree but lacking some
of the requisite coursework or field experience.

Programs of teacher education have traditionally separated knowledge of
mathematics from knowledge of pedagogy by offering separate courses in
each.78   A common practice in university-based programs has been for
prospective teachers to take courses in mathematics from the mathematics
department and courses in pedagogy from the college or department of edu-
cation, which is where they also get field experience and do supervised teach-
ing practice.  The standards for both types of courses have, in recent years,
been influenced by reports such as A Call for Change,79  which listed expecta-
tions for the mathematics courses required in teacher preparation, and the
Professional Standards for Teaching Mathematics,80  which concentrated more on
issues of pedagogy.

Nationally, two-year colleges have been urged to play a larger role in
recruiting future elementary and middle school teachers and providing college-
level mathematics courses for them.81   At the same time, universities are
exploring different ways of connecting courses on mathematics content and
pedagogy and on giving students earlier and more intensive experience in
school mathematics classes.  Some recent programs have attempted to bring
content and pedagogy together in both teacher preparation and professional
development by considering the actual mathematical work of teaching.82

Although states have long set such requirements for teachers seeking
certification, some have recently begun to impose higher standards for the
knowledge teachers should have to teach children at a given age or grade
level, requiring teachers to take specified courses and to pass assessments of
their subject matter knowledge.83   There is considerable variation across states
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as to how rigorous these requirements are.  As of 1998, 31 states reported
having standards for teacher certification, although in several the standards
were not yet in effect.  In 12 of the 31, there were specific standards for math-
ematics.  Six other states were still developing standards.84

To be certified to teach elementary school, only 12 states require a mini-
mum number of credits in mathematics (from 6 to 12 semester hours).  The
other states either specify a total number of credits drawn from five to eight
fields (often with a major in one of the fields), impose their own standards
rather than specifying courses, require a minimum number of credits in one
unspecified field, or require the completion of an approved teacher educa-
tion program.  Thirty-seven states grant middle school certification, and the
requirements fall into categories similar to those for elementary school.  Eight
of those states require a minimum number of credits in mathematics to teach
in middle school (from 6 to 21 semester hours).

A highly influential report on the reform of teacher education was issued
in 1986 by the Holmes Group, later the Holmes Partnership, a consortium of
major research universities.85   The report recommended that prospective
teachers get a solid grounding in academic subjects as undergraduates, learn-
ing pedagogy as postgraduates.  The report also encouraged the development
of so-called professional development schools and other forms of cooperative
partnerships between schools and universities.  In part because of the Holmes
report, some 300 schools of education created programs that went beyond the
traditional four-year degree programs, included more study of subject matter,
and gave more clinical training in schools.86   Also, during the 1990s, more
states began to require new teachers to have an undergraduate or graduate
major in an academic subject they would be teaching rather than a major in
education.  As of 1998, 21 states required a major in the teaching field, and
another 10 required either a major or a minor.  In most states the requirement
applies to teachers applying for middle or secondary certification, which usu-
ally cover grades 7 to 12.  In four states an academic major is required for
teachers at all grades K to 12.

In line with the trend toward more mandated assessments of students, as
of 1998, 38 states required that prospective teachers pass an assessment, some-
times to be admitted to a program and other times after completing the pro-
gram but before certification.  Almost all of these states assess new teachers’
“basic skills,” and most of the others also assess “professional knowledge of
teaching,” “subject matter knowledge” (e.g., mathematics), or both.  Eight
states use portfolio assessment, with some requiring the portfolio at the end
of preservice education and others requiring it during the first or second year
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of teaching.  Thirteen states require classroom observation as part of the assess-
ment for certification.

Despite the establishment of these increased standards, there is wide
variation in the extent to which they are enforced:

Whereas some states do not allow districts to hire unqualified teach-
ers, others routinely allow the hiring of candidates who have not met
their standards, even when qualified teachers are available.  In
Wisconsin and eleven other states, for example, no new elementary
or secondary teachers were hired without a license in their field in
1994.  By contrast, in Louisiana, 31% of new entrants were unlicensed
and another 15% were hired on substandard licenses.  At least six
other states allowed 20% or more of new public school teachers to be
hired without a license in their field.87

Of the 26 states reporting data in 1998 on the certification of their teachers
at grades 7 and 8, only 6 states reported that 90% or more of these teachers
were certified in mathematics, and only 10 states reported that more than
80% were certified.  In response to urgent needs for teachers, states often
issue so-called emergency credentials that bypass their own requirements.
These credentials typically require only a bachelor’s degree and enrollment
in an approved program leading to some form of alternative certification.  Many
districts respond to the need for mathematics and science teachers by assign-
ing teachers to teach outside their field.88

The evidence is mixed as to whether relatively fewer teachers are teach-
ing outside their field today than a decade ago; data from different sources
yield different numbers and contrasting evidence of change.  In the 1996
NAEP mathematics assessment, teachers of 81% of the eighth graders in the
sample reported that they were certified in mathematics, and the correspond-
ing figure for fourth graders was 32%.  Those numbers were not significantly
different from what teachers had reported in 1992.89   In contrast, the Council
of Chief State School Officers reported in 1998 that 72% of all mathematics
teachers at grades 7 and 8 in the 26 states providing data were reported as
certified, 22% as not certified, and the remainder as having elementary school
certification.  In a corresponding survey in 1994, the percentage of certified
teachers at those grades had been only 54, a significantly smaller number.90

In other words, to judge by teachers’ own reports, the situation has not
changed, but to judge by reports from the states, it has improved at grades 7
and 8.
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In the 1996 NAEP mathematics assessment, teachers were asked how
many hours of professional development they had received in the previous
12 months.  Nationally, 28% of the fourth graders in the sample had teachers
who had received 16 or more hours of professional development in math-
ematics; for eighth graders, the percentage was 48.  In 16 states, over half the
eighth graders were taught by mathematics teachers who had received that
much professional development.91

The number of states requiring that teachers participate in professional
development activities for renewal of certification has been on the increase
over the past decade.  Currently, only Hawaii, Illinois, New Jersey, New
Mexico, and New York do not have a policy on professional development for
renewing certification.  In half the states the policy is 6 semester credits every
five years.  Several states have higher requirements.  North Carolina requires
15 credits every five years, and in Oregon, teachers must earn 24 quarter hours
in their first three years of teaching.92

In an effort to encourage teachers to extend their professional develop-
ment efforts, 30 states have adopted incentives for teachers certified by the
National Board for Professional Teaching Standards, such as portability of
certification, certification renewal, fee supports, and pay supplements.93

Standards for National Board certification are available in mathematics for
teachers of students ages 11 to 15.  Certification at the elementary school
level is general.  Teachers seeking a certificate must submit a portfolio docu-
menting their classroom practice and must go to an assessment center for a
one-day series of exercises in which they demonstrate their knowledge of
mathematical content and analyze student work.

There is a growing body of evidence suggesting that states and local dis-
tricts “interested in improving student achievement may be well-advised to
attend, at least in part, to the preparation and qualifications of the teachers
they hire and retain in the profession.”94   A qualitative and quantitative analysis
of data from a 50-state survey of policies, state case study analyses, the 1993-94
Schools and Staffing Surveys, and NAEP identified the percentage of teachers
with full certification and a major in the field they teach as a strong and con-
sistent predictor of student achievement in mathematics, considerably stronger
than such factors as class sizes, pupil-teacher ratios, state per-pupil spending,
or teachers’ salaries.95   This link between teacher qualification and student
achievement raises the question of how good that achievement is.
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Achievement

Since the early 1970s, a series of national and international assessments
have provided a reasonably consistent picture of U.S. students’ achievement
in mathematics.  As one analysis of these assessments puts it, the results “evoke
both a sense of despair and of hope.”96   The despair comes from the gener-
ally low level of performance, the hope from signs that performance in some
areas of mathematics and by some groups of students has been improving
over the last decade.

The many mathematics assessments conducted since 1973 by NAEP
demonstrate that student performance at each of the grade levels assessed is
considerably below what mathematics teachers and the public would prefer.
Since 1990, NAEP has included two separate components for mathematics:
main NAEP and long-term trend NAEP.  The long-term trend assessments
use the same sets of questions first used in 1973, allowing comparison across
time.  The main assessments reflect more contemporary educational objec-
tives and are used to collect both national and state data, including contex-
tual data such as teaching practices, some of which are reported earlier in this
chapter.97   Except when we refer explicitly to the long-term trend assess-
ments, the data reported here are from the main assessments.

In the 1996 mathematics assessment—the most recent main assessment
to be thoroughly analyzed—across grades 4, 8, and 12, roughly 35% of the
students were below the basic level of achievement and another 45% or so
were at that level, which is defined as denoting “partial mastery of knowl-
edge and skills that are fundamental for proficient work.”  In the same assess-
ment, 21% of fourth graders and 24% of eighth graders were at or above the
“proficient” level, where proficiency is defined as students having “demon-
strated competency over challenging subject matter” and being “well pre-
pared for the next level of schooling.”  Only 2% and 4% of fourth-grade and
eighth-grade students, respectively, were doing advanced work significantly
“beyond proficient grade-level mastery.”98

Although overall levels of achievement are low, the main NAEP assess-
ments in the 1990s revealed significant gains.99   The gains between 1990 and
1996 have been estimated to be about one grade level.100   According to the
NAEP long-term trend, mathematics achievement improved between 1973
and 1996 at both the fourth-grade and eighth-grade levels.101   Performance
improved even more sharply from 1973 to 1996 among black and Hispanic
students.102   Although the gap between black students and white students
had narrowed through the 1980s, it widened between 1990 and 1999, espe-
cially among students of the best-educated parents.103   This disparity repre-
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sents a serious challenge to U.S. education.  In 1994, NAEP began collecting
information on participation in Title I programs, programs designed to help
disadvantaged students, and in 1996 on eligibility for free or reduced-priced
lunches.  At both grades 4 and 8, students who participated in Title I pro-
grams and students who were eligible for free or reduced-priced lunches scored
lower than their nonparticipating or noneligible classmates.104   The low math-
ematics achievement of poor children is embedded in the larger social issues
of poverty and poses another serious challenge to U.S. education.

International comparisons of mathematics achievement demonstrate many
of the same findings as the NAEP results.  On several international math-
ematics assessments conducted since the 1970s, the overall performance of
U.S. students has lagged behind the performance of students in other
countries.  In TIMSS, U.S. fourth graders performed above the international
average of the 26 participating countries at fourth grade but still significantly
below the levels of the top-performing countries.  U.S. eighth graders per-
formed slightly below the international average in mathematics among the
41 participating countries.

As this volume went to press, the results of  TIMSS-R (Third International
Mathematics and Science Study-Repeat), the 1999 version of TIMSS, had
just been released.  Between 1995 and 1999, there was no significant change
in the mathematics achievement of U.S. eighth graders.  Furthermore, the
eighth graders in 1999, who compared quite well internationally in 1995 as
fourth graders, were very much like the 1995 eighth graders, performing near
the international average.105

One way to quantify U.S. students’ performance is in terms of the aver-
age number of points they scored on the 1995 TIMSS assessment.  Each
student answered a subset of the TIMSS questions, and an average score was
calculated for each question, with some questions worth more than one point.
The U.S. fourth graders scored, on average, 71 out of the 113 points available
on the TIMSS achievement test, which contained 102 questions.106   That
was about 4 points above the performance across all 26 countries, but it was
11 to 15 points below the performance of students in the top four countries
(Singapore, Korea, Japan, and Hong Kong) and was in a band of performance
comparable with that found in the Czech Republic, Ireland, and Canada.
In the assessment of eighth graders, U.S. students scored, on average, 86 points
out of the 162 available on the 151 TIMSS items, which was 3 points below
the 41-country average.  Students in the four top-scoring countries—Singapore,
Japan, Korea, and Hong Kong—scored, on average, between 113 and 128
points.107
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The performance of U.S. students in TIMSS differed markedly across
core domains of mathematics.  U.S. performance was above the international
average on data representation, analysis, and probability and not significantly
different from the international average on fractions, number sense, and
algebra.  Performance was below the international average on geometry, mea-
surement, and proportionality.108   For example, U.S. eighth graders had much
weaker abilities, overall, than their counterparts in other countries to concep-
tualize measurement relationships, perform geometric transformations, and
engage in other complex mathematical tasks.  These kinds of abilities are
among the learning goals called for by national documents setting forth
standards and benchmarks for school mathematics and by many sets of state
standards, indicating that many U.S. students are not now achieving the
objectives of those standards.109

Interestingly, the variance of U.S. scores in the TIMSS results was not
markedly greater than in other countries.  There was, however, considerable
variability in scores between states.  A study linking state NAEP scores at
grade 8 with TIMSS scores showed that the top-scoring states on NAEP per-
formed quite well internationally, with only 6 of 41 countries scoring signifi-
cantly higher.  In contrast, low-scoring states scored significantly higher than
as few as 3 of 41 countries.110   These results suggest that national averages
may miss important aspects of U.S. mathematics education.

Even state averages do not tell the whole story, however.  A consortium
of districts in suburban Chicago participated in TIMSS so that they might be
treated as a country in the analysis.  Their performance was exceptional on
the mathematics assessments at both grades 4 and 8, with only Singapore
scoring significantly higher.  Although some of their success is clearly attrib-
utable to being relatively wealthy districts, socioeconomic factors explained
only 25% of the differences in scores at fourth grade and 50% of the differ-
ences in scores at eighth grade.111

More generally, variance in student scores was strongly linked to the spe-
cific classes a student took (for example, regular mathematics versus algebra
in middle school or junior high) and to differences among schools.  In particular,
64% of the variance in U.S. student mathematics achievement at eighth grade
can be explained by differences between schools or classes.  In Japan, in con-
trast, only 7% of the variance in student mathematics achievement was
between schools or classes.112   These findings suggest that many U.S. stu-
dents are not being given the educational opportunities they need to achieve
at high levels.113
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Coordinating Improvement Efforts

In the late 1850s, the city of Chicago started a massive project to replace
its dirt (and often mud) streets with a more permanent road and sidewalk
system.  The city had to raise the roadbed substantially and lift the existing
buildings so that they were level with the new sidewalks.  The zenith of this
undertaking was the lifting of the Tremont Hotel in 1858, organized by George
Pullman.  While hotel patrons ate breakfast, Pullman’s crew of 1,200 men
carefully turned some 5,000 jackscrews to raise the building evenly.

As with raising the Tremont Hotel, improving the U.S. system of school
mathematics demands not simply effort but coordination.  Although many
individuals have worked diligently over the past several decades to change
the ways in which mathematics is taught and learned, the evidence clearly
indicates that considerable improvement is still necessary.  Across the country,
schools and teachers face the substantial challenge of providing all children
with the opportunity to become mathematically proficient.  Much of the dif-
ficulty in meeting that challenge arises because the effort to date has not
been concerted.  The U.S. system of school mathematics cannot be made to
operate better by fixing one tiny piece at a time; it requires a thorough,
methodical overhaul.114

Authority in the U.S. system is widely dispersed, with states, districts,
the federal government, textbook and test publishers, professional and political
organizations, teachers, and parents and other caregivers each trying to exer-
cise control of the part of the system within their purview.  We urge, there-
fore, all who are attempting to improve mathematics learning in grades pre-K
to 8 to reflect on the observations made in this report and to consider how
they might connect and coordinate their efforts with those of others.

In subsequent chapters we set forth important research, theory, and
organizing principles intended to ground future efforts in fact and principled
argument, to make assumptions more explicit, and to bring greater coher-
ence to the system.  We would like to see an independent group of recog-
nized standing conduct continuing, ongoing assessment of the progress made
over the coming years in meeting the goal of mathematical proficiency for all
U.S. schoolchildren.  Such an assessment would help enormously in the coor-
dination of efforts to make school mathematics a better functioning system
for everyone.

Before considering the issues of learning and teaching that contribute to
the development of mathematical proficiency, we devote the next chapter to
considering the mathematical landscape upon which our later analyses are
built.  To understand how it is that students become proficient and the chal-
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lenges they face in doing so, it is important to understand the mathematics
with which they are engaged.  Because we have chosen to focus on profi-
ciency with number, chapter 3 lays out the mathematics of number.

Notes
1. Robitaille, 1997; Stigler and Hiebert, 1999; U.S. Department of Education, 1998b,

1999a, 1999b.
2. Howson, 1995; Schmidt, McKnight, and Raizen, 1997.
3. An analysis of data from the Second International Mathematics Study (SIMS)

examined features such as time for mathematics instruction, class size, and teacher
preparation, and other instructional variables and concluded that none of them alone
could explain differences in achievement across countries (McKnight, Crosswhite,
Dossey, Kifer, Swafford, Travers, and Cooney, 1987).

4. National Council of Teachers of Mathematics, 1989.
5. National Council of Teachers of Mathematics, 1991.
6. National Council of Teachers of Mathematics, 1995.
7. National Council of Teachers of Mathematics, 2000.
8. See http://www.edc.org/mcc/currcula.htm for information on the 13 NSF projects.
9. See Jennings, 1998.  In making the case for national standards and describing the

background behind the movement, Ravitch, 1995, emphasizes that when the
president and the governors established national education goals in 1990, mathematics
was the only subject matter for which “educators were ready to say what children
should learn and teachers should teach” (p. 121).

10. Elmore and Rothman, 1999, p. 1.
11. A Nation at Risk: National Commission on Excellence in Education, 1983; America

2000: U.S. Department of Education, 1991; Goals 2000: U.S. Department of
Education, 1998a.

12. Blank, Manise, and Brathwaite, 2000, pp. viii–xi.  See also Orlofsky and Olson, 2001.
13. See the individual state reports in Raimi and Braden, 1998.
14. Fordham Foundation, 1997–98; Gandal, 1997; Joftus and Berman, 1998; Raimi and

Braden, 1998; for an analysis of the divergence across the three sets of ratings, see
Camilli and Firestone, 1999.

15. Pimentel and Arsht, 1998.
16. Marzano, Kendall, and Gaddy, 1999.
17. Dossey, 1997, p. 40.
18. McKnight, Crosswhite, Dossey, Kifer, Swafford, Travers, and Cooney, 1987, p. 74;

Suydam, 1985; Tyson and Woodward, 1989; Woodward and Elliott, 1990.
19. Council of Chief State School Officers, 1998.
20. Woodward and Elliot, 1990; Tyson and Woodward, 1989.  The observations in this

paragraph are based on a review by Grouws and Cebulla, 2000.
21. Fey, 1980.
22. Grouws and Smith, 2000.

Copyright © National Academy of Sciences. All rights reserved.



60 ADDING IT UP

23. Schwille, Porter, Belli, Floden, Freeman, Knappen, Kuhs, and Schmidt, 1983;
Stodolsky, 1988; Sosniak and Stodolsky, 1993.

24. Tyson-Bernstein, 1988, p. 7.
25. Fuson, Stigler, and Bartsch, 1988; McKnight, Crosswhite, Dossey, Kifer, Swafford,

Travers, and Cooney, 1987; McKnight and Schmidt, 1998; Peak, 1996.
26. Flanders, 1987; Fuson, Stigler, and Bartsch, 1988; Schmidt, McKnight, and Raizen,

1997.
27. Fuson, Stigler, and Bartsch, 1988; Schmidt, McKnight, Cogan, Jakwerth, and Houang,

1999; Schmidt, McKnight, and Raizen, 1997.
28. Levin, 1989; Levin and Mayer, 1993; Mayer, 1993.
29. Reys, 2000.
30. U.S. Department of Education, Mathematics and Science Expert Panel, 1999.
31. Mathematically Correct, 2000.
32. American Association for the Advancement of Science, 2000a, 2000b; Clopton,

McKeown, McKeown, and Clopton, 2000a, 2000b.
33. The current center is the National Center for Improving Student Learning and

Achievement in Mathematics and Science at the University of Wisconsin-Madison.
For information on currently funded projects, see http://forum.swarthmore.edu/
mathed/curriculum.dev.html. [July 20, 2001].

34. For example, the University of Chicago School Mathematics project and the
Mathematics in Context project at the University of Wisconsin.

35. Tyson-Bernstein, 1988, pp. 17–36.
36. Glaser and Silver, 1994, p. 403.
37. Mitchell, Hawkins, Jakwerth, Stancavage, and Dossey, 1999, pp. 260–264.
38. Mitchell, Hawkins, Jakwerth, Stancavage, and Dossey, 1999, p. 261.  Moderate testing

is associated with higher achievement even when controlling for socioeconomic
factors.  See Mullis, Jenkins, and Johnson, 1994, p. 61.

39. For a discussion of these calls, see Elmore and Rothman, 1999.
40. Mitchell, Hawkins, Jakwerth, Stancavage, and Dossey, 1999, p. 262.
41. Dossey, 1997, p. 37.
42. Council of Chief State School Officers, 1998.
43. Jerald, Curran, and Boser, 1999, p. 81.  See Education Commission of the States,

2000, for a thorough description of state policies and actions.
44. Sandham, 1999.
45. Gehring, 2000.
46. Bishop, 1997.
47. Darling-Hammond, 1999, p. 33.
48. Steinberg, 1999.
49. This terminology was part of the Title I law; Elmore and Rothman, 1999.
50. Archer, 1997.
51. Musick, 1997.
52. Standardized tests are tests that are “administered and scored under conditions

uniform to all students” (U.S. Congress, Office of Technology Assessment, 1992, p. 5).
53. Romberg and Wilson, 1992.

Copyright © National Academy of Sciences. All rights reserved.



612 THE STATE OF SCHOOL MATHEMATICS IN THE UNITED STATES

54. Rothman, 1995; U.S. Congress, Office of Technology Assessment, 1992, chap. 6.
55. Anastasi, 1988; Crocker, and Algina, 1986.
56. Rothman, 1995, p. 5.
57. Heubert and Hauser, 1998; Pullin, 1993.
58. Elmore and Rothman, 1999.
59. Except for the data on teachers’ knowledge of the 1989 NCTM standards, the

remaining data in this section are taken from Mitchell, Hawkins, Jakwerth,
Stancavage, and Dossey, 1999.

60. Council of Chief State School Officers, 2000, p. 10.
61. Mitchell, Hawkins, Jakwerth, Stancavage, and Dossey, 1999, pp. 251–252.
62. Hawkins, Stancavage, and Dossey, 1998, p. 41.
63. Antil, Jenkins, Wayne, and Vadasy, 1998.
64. Stigler and Hiebert, 1999, pp. 104-106.
65. Cuban, 1993; Hoetker and Ahlbrand, 1969.
66. Hoetker and Ahlbrand, 1969; Tharp and Gallimore, 1988.
67. Stodolsky, 1988.
68. Weiss, 1978.
69. Stake and Easley, 1978.
70. Welch, 1978, p. 6.
71. Fey, 1979, p. 494.
72. National Advisory Committee on Mathematical Education, 1975, p. 77.
73. Stigler, Gonzales, Kawanaka, Knoll, and Serrano, 1999.
74. Stigler and Hiebert, 1999.
75. Stigler and Hiebert, 1999, p. 61.
76. Stigler and Hiebert, 1999, p. 57.
77. Dixon, Carnine, Kameenui, Simmons, Lee, Wallin, and Chard, 1998a, 1998b.
78. Swafford, 1995.
79. Leitzel, 1991.
80. National Council of Teachers of Mathematics, 1991.
81. Raychowdhury, 1998.
82. See, for example, National Research Council, 2001; Conference Board of the

Mathematical Sciences, 2000.  See Ferrini-Mundy and Findell, 2001, for a discussion
of the principles behind these and other approaches to improving the connection
between the mathematical education of teachers and the mathematics used in
classrooms.

83. See http://www.ccsso.org/intasc.html [July 20, 2001] for information on model
standards and assessments of beginning teachers promoted by the Interstate New
Teacher Assessment and Standards Consortium.

84. Council of Chief State School Officers, 1998.  Unless otherwise indicated, the data
on certification come from this document.

85. Holmes Group, 1986.
86. Darling-Hammond, 1997.
87. Darling-Hammond, 1999, p. 15.
88. Blank and Langeson, 1999, p. 66.

Copyright © National Academy of Sciences. All rights reserved.



62 ADDING IT UP

89. Hawkins, Stancavage, and Dossey, 1998, p. 19.
90. Blank and Langeson, 1999, p. 64.
91. Blank and Langeson, 1999, p. 73.
92. Council of Chief State School Officers, 1998, p. 26.
93. Jerald, Curran, and Boser, 1999, p. 116.  For information on the National Board for

Professional Teaching Standards, see http://www.nbpts.org [July 20, 2001] or Kelly,
1995.

94. Darling-Hammond, 1999, pp. 38–39.
95. Darling-Hammond, 1999, p. 29.
96. Dossey and Mullis, 1997, p. 20.
97. Campbell, Voelkl, and Donahue, 2000.
98. Reese, Miller, Mazzeo, and Dossey, 1997, p. 53.
99. Reese, Miller, Mazzeo, and Dossey, 1997.

100. Dossey, 2000, p. 31.
101. Campbell, Voelkl, and Donahue, 2000.
102. Campbell, Voelkl, and Donahue, 2000, p. 62–64.  See also Secada, 1992; Silver,

Strutchens, and Zawojewski, 1997; Strutchens and Silver, 2000.
103. Zernike, 2000.
104. Reese, Miller, Mazzeo, and Dossey, 1997, pp. 38–39.
105. U.S. Department of Education, 2000b.
106. The values in the text are computed from Mullis, Martin, Beaton, Gonzalez, Kelly,

& Smith, 1997, p. B-3.  For similar discussions, see National Research Council, 1999a,
p. 21; National Council of Teachers of Mathematics, 1997.

107. The values in the text are computed from Beaton, Mullis, Martin, Gonzalez, Kelly,
& Smith, 1996, p. B-3.  For similar discussions, see National Research Council, 1999a,
p. 21; National Council of Teachers of Mathematics, 1996.

108. U.S. Department of Education, 2000a.
109. National Research Council, 1999a, p. 27; Wilson and Blank, 1999, pp. 2–3.
110. National Education Goals Panel, 1998.
111. Kimmelman, Kroeze, Schmidt, van der Ploeg, McNeely, and Tan, 1999.
112. Martin, Mullis, Gregory, Hoyle, and Shen, in press.  The Second International

Mathematics Study produced similar results (McKnight, Crosswhite, Dossey, Kifer,
Swafford, Travers, and Cooney, 1987, pp. 108–109).

113. National Research Council, 1999a, p. 20.
114. The National Research Council, 1999b, put forward a Strategic Education Research

Program that aims to coordinate improvement efforts through networks of committed
education researchers, practitioners, and policy makers.

References
American Association for the Advancement of Science.  (2000a).  Algebra for all—Not with

today’s textbooks, says AAAS [On-line].  Available: http://www.project2061.org/newsinfo/
press/r1000426.htm. [July 10, 2001].

Copyright © National Academy of Sciences. All rights reserved.



632 THE STATE OF SCHOOL MATHEMATICS IN THE UNITED STATES

American Association for the Advancement of Science.  (2000b).  Middle grades mathematics
textbooks: A benchmarks-based evaluation [On-line].  Available: http://www.project2061.org/
matheval/default.htm. [July 10, 2001].

Anastasi, A.  (1988).  Psychological testing.  New York: Macmillan.
Antil, L. R., Jenkins, J. R., Wayne, S. K., & Vadasy, P. F.  (1998).  Cooperative learning:

Prevalence, conceptualizations, and the relation between research and practice.
American Educational Research Journal, 35, 419–454.

Archer, J.  (1997, January 15).  States struggle to ensure data make the grade.  Education
Week [On-line].  Available: http://www.edweek.com/ew/1997/16data.h16. [July 10,
2001].

Beaton, A. E., Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A.
(1996).  Mathematics achievement in the middle school years: IEA’s Third International
Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College.

Bishop, J. H.  (1997).  The effect of national standards and curriculum-based exams on
achievement.  American Economic Review, 87, 260–264.

Blank, R. K., & Langeson, D.  (1999).  State indicators of science and mathematics education
1999: State-by-state trends and new indicators from the 1997–98 school year.  Washington,
DC: Council of Chief State School Officers.  Available: http://www.ccsso.org/
SciMathIndicators99.html. [July 10, 2001].

Blank, R. K., Manise, J., & Brathwaite, B. C.  (2000).  State education indicators with a focus
on Title I: 1999.  Washington, DC: Council of Chief State School Officers.  Available:
http://www.ccsso.org/99Indicators.html. [July 10, 2001].

Camilli, G., & Firestone, W. A.  (1999).  Values and state ratings: An examination of the
state-by-state education indicators in Quality Counts.  Educational Measurement: Issues
and Practice, 18(4), 17–25.

Campbell, J. R., Voelkl, K. E., & Donahue, P. L.  (2000).  NAEP 1996 trends in academic
progress (NCES 97-985r).  Washington, DC: National Center for Education Statistics.
Available: http://nces.ed.gov/spider/webspider/97985r.shtml. [July 10, 2001].

Clopton, P., McKeown, E. H., McKeown, M., & Clopton, J.  (2000a).  Mathematically correct
Algebra 1 reviews [On-line].  Available: http://www.mathematicallycorrect.com/
algebra.htm. [July 10, 2001].

Clopton, P., McKeown, E., McKeown, M., & Clopton, J.  (2000b).  Mathematically correct
mathematics program reviews for grades 2, 5, and 7 [On-line].  Available: http://
www.mathematicallycorrect.com/books.htm. [July 10, 2001].

Conference Board of the Mathematical Sciences.  (2000, September).  CBMS Mathematical
Education of Teachers Project draft report [On-line].  Available: http://www.maa.org/cbms/
metdraft/index.htm. [January 3, 2001].

Council of Chief State School Officers.  (2000).  Using data on enacted curriculum in mathematics
& science.  Washington, DC: Author.  Available: http://www.ccsso.org/pdfs/
finalsummaryreport.pdf. [July 10, 2001].

Council of Chief State School Officers, State Education Assessment Center.  (1998).  Key
state education policies on K-12 education.  Washington, DC: Author.  Available: http://
publications.ccsso.org/ccsso/publication_detail.cfm?PID=187. [July 10, 2001].

Crocker, L., & Algina, J.  (1986).  Introduction to classical and modern test theory.  New York:
CBS College Publishing.

Copyright © National Academy of Sciences. All rights reserved.



64 ADDING IT UP

Cuban, L.  (1993).  How teachers taught: Constancy and change in American classrooms, 1890–
1990 (2nd ed.).  New York: Teachers College Press.

Darling-Hammond, L.  (1997).  The right to learn: A blueprint for creating schools that work.
San Francisco: Jossey-Bass.

Darling-Hammond, L.  (1999, December).  Teacher quality and student achievement: A review
of state policy evidence.  Seattle: Center for the Study of Teaching and Policy.  Available:
http://depts.washington.edu/ctpmail/ or http://olam.ed.asu.edu/epaa/v8n1/. [July 10,
2001].

Dixon, R. C., Carnine, D. W., Kameenui, E. J., Simmons, D. C., Lee, D.-S., Wallin, J., &
Chard, D.  (1998a).  Report to the California State Board of Education: Review of high
quality experimental mathematics research.  Eugene, OR: National Center to Improve
the Tools of Educators.  Available: http://idea.uoregon.edu/~ncite/documents/math/
math.html. [July 10, 2001].

Dixon, R. C., Carnine, D. W., Kameenui, E. J., Simmons, D. C., Lee, D.-S., Wallin, J., &
Chard, D.  (1998b).  Report to the California State Board of Education: Review of high
quality experimental research.  Executive summary.  Eugene, OR: National Center to
Improve the Tools of Educators.  Available: http://idea.uoregon.edu/~ncite/documents/
math/math.html. [July 10, 2001].

Dossey, J. A.  (1997).  Essential skills in mathematics: A comparative analysis of American and
Japanese assessments of eighth-graders (NCES 97-885).  Washington, DC: National Center
for Education Statistics.  Available: http://nces.ed.gov/spider/webspider/97885.shtml.
[July 10, 2001].

Dossey, J. A.  (2000).  The state of NAEP mathematics findings.  In E. A. Silver & P. A.
Kenney (Eds.), Results from the seventh mathematics assessment of the National Assessment
of Educational Progress (pp. 23–43).  Reston, VA: National Council of Teachers of
Mathematics.

Dossey, J. A., & Mullis, I. V. S.  (1997).  NAEP Mathematics—1990–1992: The national,
trial state, and trend assessments.  In P. A. Kenney & E. A. Silver (Eds.), Results from
the sixth mathematics assessment of the National Assessment of Educational Progress (pp. 17–
32).  Reston, VA: National Council of Teachers of Mathematics.

Education Commission of the States.  (August 2000).  State takeovers and reconstitutions
(Policy Brief 1359).  Denver: Author.  Available: http://www.ecs.org/clearinghouse/
13/59/1359.htm. [July 10, 2001].

Elmore, R. F., & Rothman, R. (Eds.).  (1999).  Teaching, testing, and learning: A guide for states
and school districts.  Washington, DC: National Academy Press.  Available: http://
books.nap.edu/catalog/9609.html. [July 10, 2001].

Ferrini-Mundy, J., & Findell, B.  (2001).  The mathematical education of prospective
teachers of secondary school mathematics: Old assumptions, new challenges.  In CUPM
discussion papers about mathematics and the mathematical sciences in 2010: What should
students know? (pp. 31–41).  Washington, DC: Mathematical Association of America.
Available: http://www.maa.org/news/cupm_text.html. [July 10, 2001].

Fey, J. T.  (1979).  Mathematics teaching today: Perspectives from three national surveys.
Mathematics Teacher, 72, 490–504.

Fey, J. T.  (1980).  Mathematics education research on curriculum and instruction.  In R. J.
Shumway (Ed.), Research in mathematics education (pp. 388–432).  Reston, VA: National
Council of Teachers of Mathematics.

Copyright © National Academy of Sciences. All rights reserved.



652 THE STATE OF SCHOOL MATHEMATICS IN THE UNITED STATES

Flanders, J. R.  (1987).  How much of the content in mathematics textbooks is new?
Arithmetic Teacher, 35(1), 18–23.

Fordham Foundation.  (1997-1998).  Evaluation of state standards for math, English, science
and history.  Washington, DC: Author.

Fuson, K. C., Stigler, J., & Bartsch, K.  (1988).  Brief report: Grade placement of addition
and subtraction topics in Japan, mainland China, the Soviet Union, Taiwan, and the
United States.  Journal for Research in Mathematics Education, 19, 449–456.

Gandal, M.  (1997).  Making standards matter: An annual fifty-state report on efforts to raise
academic standards.  Washington, DC: American Federation of Teachers.

Gehring, J.  (2000, February 2).  “High stakes” exams seen as test for voc. ed.  Education
Week [On-line].  Available: http://www.edweek.org/ew/ewstory.cfm?slug=21voctest.h19.
[July 10, 2001].

Glaser, R., & Silver, E. A.  (1994).  Assessment, testing, and instruction: Retrospect and
prospect.  In L. Darling-Hammond (Ed.), Review of research in education (vol. 20, pp.
393–419).  Washington, DC: American Educational Research Association.

Grouws, D. A., & Cebulla, K. J.  (2000).  Elementary and middle school mathematics at
the crossroads.  In T. L. Good (Ed.), American education: Yesterday, today, and tomorrow
(Ninety-ninth Yearbook of the National Society for the Study of Education, Part 2,
pp. 209–255).  Chicago: University of Chicago Press.

Grouws, D. A., & Smith, M. A.  (2000).  NAEP findings on the preparation and practices of
mathematics teachers.  In E. A. Silver & P. A. Kenney (Eds.), Results from the seventh
mathematics assessment of the National Assessment of Educational Progress (pp. 107-139).
Reston, VA: National Council of Teachers of Mathematics.

Hawkins, E. F., Stancavage, F. B., & Dossey, J. A.  (1998).  School policies and practices
affecting instruction in mathematics (NCES 98-495).  Washington, DC: National Center
for Education Statistics.  Available: http://nces.ed.gov/spider/webspider/98495.shtml.
[July 10, 2001].

Heubert, J. P., & Hauser, R. M. (Eds.).  (1998).  High stakes: Testing for tracking, promotion,
and graduation.  Washington, DC: National Academy Press.  Available: http://
books.nap.edu/catalog/6336.html. [July 10, 2001].

Hoetker, J., & Ahlbrand, W.  (1969).  The persistence of the recitation.  American Educational
Research Journal, 6, 145–167.

Holmes Group.  (1986).  Tomorrow’s teachers.  East Lansing, MI: Author.  (ERIC Document
Reproduction Service No. ED 270 454).

Howson, G.  (1995).  Mathematics textbooks: A comparative study of grade 8 texts (TIMSS
Monograph No. 3).  Vancouver: Pacific Educational Press.

Jennings, J. F.  (1998).  Why national standards and tests? Politics and the quest for better schools.
Thousand Oaks, CA: Sage Publications.

Jerald, C. D., Curran, B. K., & Boser, U.  (1999, January 11).  The state of the states
[Quality Counts ’99].  Education Week, pp. 106–123.  Available: http://www.edweek.org/
sreports/qc99/states/indicators/in-intro.htm. [July 10, 2001].

Joftus, S., & Berman, I.  (1998).  Great expectations? Defining and assessing rigor in state standards
for mathematics and English language arts.  Washington, DC: Council for Basic Education.

Kelly, J. A.  (1995).  The National Board for Professional Teaching Standards: Making
professional development “professional.”  In I. M. Carl (Ed.), Prospects for school
mathematics (pp. 202–215).  Reston, VA: National Council of Teachers of Mathematics.

Copyright © National Academy of Sciences. All rights reserved.



66 ADDING IT UP

Kimmelman, P., Kroeze, D., Schmidt, W., van der Ploeg, A., McNeely, M., & Tan, A.
(1999).  A first look at what we can learn from high performing school districts: An analysis of
TIMSS data from the First in the World Consortium.  Jessup, MD: U.S. Department of
Education.

Leitzel, J. R. C. (Ed.).  (1991).  A call for change: Recommendations for the mathematical
preparation of teachers of mathematics (MAA Reports, vol. 3).  Washington, DC:
Mathematical Association of America.

Levin, J. R.  (1989).  A transfer-appropriate processing perspective of pictures in prose.  In
H. Mandl & J. R. Levin (Eds.), Knowledge acquisition from text and pictures (pp. 83–
100).  Amsterdam: Elsevier.

Levin, J. R., & Mayer, R. E.  (1993).  Understanding illustrations in text.  In B. K. Britton,
A. Woodward, & M. Binkley (Eds.), Learning from textbooks: Theory and practice (pp.
95–113).  Hillsdale, NJ: Erlbaum.

Martin, M. O., Mullis, I. V. S., Gregory, K. D., Hoyle, C. D., & Shen, C.  (in press).  Effective
schools in science and mathematics: IEA’s Third International Mathematics and Science Study.
Chestnut Hill, MA: Boston College.

Marzano, R. J., Kendall, J. S., & Gaddy, B. B.  (1999).  Essential knowledge: The debate over
what American students should know.  Aurora, CO: Mid-Continent Research for Education
and Learning.

Mathematically Correct.  (2000).  Open letter on the Department of Education’s list of programs
[On-line].  Available: http://mathematicallycorrect.com/nation.htm#doesham.

Mayer, R. E.  (1993).  Illustrations that instruct.  In R. Glaser (Ed.), Advances in instructional
psychology (vol. 4, pp. 253–284).  Hillsdale, NJ: Erlbaum.

McKnight, C. C., Crosswhite, F. J., Dossey, J. A., Kifer, E., Swafford, J. O., Travers, K. T.,
& Cooney, T. J.  (1987).  The underachieving curriculum: Assessing U.S. school mathematics
from an international perspective.  Champaign, IL: Stipes Publishing.

McKnight, C. C., & Schmidt, W. H.  (1998).  Facing facts in U.S. science and mathematics
education: Where we stand, where we want to go.  Journal of Science Education and
Technology, 7(1), 57–76.

Mitchell, J. H., Hawkins, E. F., Jakwerth, P. M., Stancavage, F. B., & Dossey, J. A.  (1999).
Student work and teacher practices in mathematics (NCES 1999-453).  Washington, DC:
National Center for Education Statistics.  Available: http://nces.ed.gov/spider/
webspider/1999453.shtml. [July 10, 2001].

Mullis, I. V. S., Jenkins, F., & Johnson, E. G.  (1994).  Effective schools in mathematics:
Perspectives from the NAEP 1992 assessment (NCES 94-701).  Washington, DC: National
Center for Education Statistics.

Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A.
(1997).  Mathematics achievement in the primary school years: IEA’s Third International
Mathematics and Science Study (TIMSS).  Chestnut Hill, MA: Boston College.

Musick, M.  (1997).  Setting education standards high enough.  Atlanta: Southern Regional
Education Board.  Available: http://www.sreb.org/main/highschools/accountability/
settingstandardshigh.asp. [July 10, 2001].

National Advisory Committee on Mathematical Education.  (1975).  Overview and analysis
of school mathematics, grades K-12. Washington, DC: Conference Board of the
Mathematical Sciences.

Copyright © National Academy of Sciences. All rights reserved.



672 THE STATE OF SCHOOL MATHEMATICS IN THE UNITED STATES

National Commission on Excellence in Education.  (1983).  A nation at risk: The imperative
for educational reform.  Washington, DC: U.S. Government Printing Office.  Available:
http://www.ed.gov/pubs/NatAtRisk/. [July 10, 2001].

National Council of Teachers of Mathematics.  (1989).  Curriculum and evaluation standards
for school mathematics.  Reston, VA: Author.  Available: http://standards.nctm.org/
Previous/CurrEvStds/index.htm. [July 10, 2001].

National Council of Teachers of Mathematics.  (1991).  Professional standards for teaching
mathematics.  Reston, VA: Author.  Available: http://standards.nctm.org/Previous/
ProfStds/index.htm. [July 10, 2001].

National Council of Teachers of Mathematics.  (1995).  Assessment standards for school
mathematics.  Reston, VA: Author.  Available: http://standards.nctm.org/Previous/
AssStds/index.htm. [July 10, 2001].

National Council of Teachers of Mathematics.  (1996).  U.S. mathematics teachers respond to
the Third International Mathematics and Science Study: Grade 8 results [On-line].  Available:
http://www.nctm.org/news/releases/timss_eighth_grade.htm. [July 10, 2001].

National Council of Teachers of Mathematics.  (1997).  U.S. mathematics teachers respond to
the Third International Mathematics and Science Study: Grade 4 results [On-line].  Available:
http://www.nctm.org/news/releases/timss-4th-pg01.htm. [July 10, 2001].

National Council of Teachers of Mathematics.  (2000).  Principles and standards for school
mathematics.  Reston, VA: Author.  Available: http://standards.nctm.org/document/
index.htm. [July 10, 2001].

National Education Goals Panel.  (1998).  Mathematics and science achievement state by state,
1998.  Washington, DC: Government Printing Office.  Available: http://www.negp.gov/
reports/goal3_98.htm. [July 10, 2001].

National Research Council.  (1999a).  Global perspectives for local action: Using TIMSS to
improve U.S. mathematics and science education.  Washington, DC: National Academy
Press.  Available: http://books.nap.edu/catalog/9605.html. [July 10, 2001].

National Research Council.  (1999b).  Improving student learning: A strategic plan for education
research and its utilization.  Washington, DC: National Academy Press.  Available: http:/
/books.nap.edu/catalog/6488.html. [July 10, 2001].

National Research Council.  (2001).  Knowing and learning mathematics for teaching: Proceedings
of a workshop.  Washington, DC: National Academy Press.  Available: http://
books.nap.edu/catalog/10050.html. [July 10, 2001].

Orlofsky, G. F., & Olson, L.  (2001, January 11).  The state of the states [Quality Counts
2001].  Education Week, pp. 86-88.  Available: http://www.edweek.com/sreports/qc01/
articles/qc01story.cfm?slug=17states.h20. [July 10, 2001].

Peak, L.  (1996).  Pursuing excellence: A study of U.S. eighth-grade mathematics and science teaching,
learning, curriculum, and achievement in an international context.  Washington, DC: National
Center for Educational Statistics.  Available: http://nces.ed.gov/spider/webspider/
97198.shtml. [July 10, 2001].

Pimentel, S., & Arsht, L. A.  (1998, November 11).  Don’t be confused by the rankings;
focus on results.  Education Week [On-line].  Available: http://www.edweek.org/ew/
1998/11arsht.h18. [July 10, 2001].

Copyright © National Academy of Sciences. All rights reserved.



68 ADDING IT UP

Pullin, D. C.  (1993).  Legal and ethical issues in mathematics assessment.  In Mathematical
Sciences Education Board, Measuring what counts: A conceptual guide for mathematics
assessment (pp. 201–223).  Washington, DC: National Academy Press.  Available: http:/
/books.nap.edu/catalog/2235.html. [July 10, 2001].

Raimi, R. A., & Braden L. S.  (1998).  State mathematics standards: An appraisal of math
standards in 46 states, the District of Columbia, and Japan (Fordham Report 2, No. 3).
Washington, DC: Fordham Foundation.  Available: http://www.edexcellence.net/
standards/math/math.htm. [July 10, 2001].

Ravitch, D.  (1995).  National standards in American education: A citizen’s guide.  Washington,
DC: Brookings Institution.

Raychowdhury, P. N. (Ed.).  (1998).  The integral role of the two-year college in the science
and mathematics preparation of prospective teachers [Special issue].  Journal of
Mathematics and Science: Collaborative Explorations, 1(2).

Reese, C. M., Miller, K. E., Mazzeo, J., & Dossey, J. A.  (1997).  NAEP 1996 mathematics
report card for the nation and the states (NCES 97-488).  Washington, DC: National
Center for Education Statistics.  Available: http://nces.ed.gov/spider/webspider/
97488.shtml. [July 10, 2001].

Reys, R. R.  (2000).  Letter to the editor.  Journal for Research in Mathematics Education, 31,
511–512.

Robitaille, D. F. (Ed.).  (1997).  National contexts for mathematics and science education: An
encyclopedia of the education systems participating in TIMSS. Vancouver, Canada: Pacific
Educational Press.

Romberg, T. A., & Wilson, L. D.  (1992).  Alignment of tests with the standards.  Arithmetic
Teacher, 40(1), 18–22.

Rothman, R.  (1995).  Measuring up: Standards, assessment, and school reform.  San Francisco:
Jossey-Bass.

Sandham, J. L.  (1999, July 14).  In first for states, Florida releases graded “report cards”
for schools.  Education Week [On-line].  Available: http://edweek.org/ew/1999/42fla.h18.
[July 10, 2001].

Schmidt, W. H., McKnight, C. C., Cogan, L. S., Jakwerth, P. M., & Houang, R. T.  (1999).
Facing the consequences: Using TIMSS for a closer look at mathematics and science education.
Dordrecht: Kluwer.

Schmidt, W. H., McKnight, C. C., & Raizen, S. A.  (1997).  A splintered vision: An investigation
of U.S. science and mathematics education.  Dordrecht: Kluwer.

Schwille, J., Porter, A., Belli, G., Floden, R., Freeman, D., Knappen, L., Kuhs, T., &
Schmidt, W.  (1983).  Teachers as policy brokers in the content of elementary school
mathematics.  In L. S. Shulman & G. Sykes (Eds.), Handbook of teaching and policy
(pp. 370–391).  New York: Longman.

Secada, W. G.  (1992).  Race, ethnicity, social class, language, and achievement in
mathematics.  In D. Grouws (Ed.), Handbook of research on mathematics teaching and
learning (pp. 623–660).  New York: Macmillan.

Silver, E. A., Strutchens, M. E., & Zawojewski, J. S.  (1997).  NAEP findings regarding
race/ethnicity and gender: Affective issues, mathematics performance, and
instructional context.  In P. A. Kenney & E. A. Silver (Eds.), Results from the sixth
mathematics assessment of the National Assessment of Educational Progress (pp. 33–59).
Reston, VA: National Council of Teachers of Mathematics.

Copyright © National Academy of Sciences. All rights reserved.



692 THE STATE OF SCHOOL MATHEMATICS IN THE UNITED STATES

Sosniak, L. A., & Stodolsky, S. S.  (1993).  Teachers and textbooks: Materials use in four
fourth-grade classrooms.  Elementary School Journal, 93, 249–275.

Stake, R., & Easley, J. (Eds.).  (1978).  Case studies in science education.  Urbana: University
of Illinois.

Steinberg, J.  (1999, December 3).  Academic standards eased as a fear of failure spreads.
The New York Times, p. A1.

Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A.  (1999).  The TIMSS
Videotape Classroom Study: Methods and findings from an exploratory research project on
eighth-grade mathematics instruction in Germany, Japan, and the United States.  Washington,
DC: National Center for Education Statistics.  Available: http://nces.ed.gov/timss.
[July 10, 2001].

Stigler, J. W., & Hiebert, J.  (1999).  The teaching gap: Best ideas from the world’s teachers for
improving education in the classroom.  New York: Free Press.

Stodolsky, S. S.  (1988).  The subject matters: Classroom activity in math and social studies.
Chicago: University of Chicago Press.

Strutchens, M. E., & Silver, E. A.  (2000).  NAEP findings regarding race/ethnicity: Students’
performance, school experiences, and attitudes and beliefs.  In E. A. Silver & P. A.
Kenney (Eds.), Results from the seventh mathematics assessment of the National Assessment
of Educational Progress (pp. 45–72).  Reston, VA: National Council of Teachers of
Mathematics.

Suydam, M. N.  (1985).  Research in instructional materials for mathematics (ERIC/SMEAC
Special Digest No. 3).  Columbus, OH: ERIC Clearinghouse for Science, Mathematics,
and Environmental Education.

Swafford, J. O.  (1995).  Teacher preparation.  In I. M. Carl (Ed.), Prospects for school
mathematics (pp. 157–174).  Reston, VA: National Council of Teachers of Mathematics.

Tharp, R. G., & Gallimore, R.  (1988).  Rousing minds to life: Teaching, learning, and schooling
in social context.  New York: Cambridge University Press.

Tyson, H., & Woodward, A.  (1989).  Why students aren’t learning very much from textbooks.
Educational Leadership, 47, 14–17.

Tyson-Bernstein, H.  (1988).  A conspiracy of good intentions: America’s textbook fiasco.
Washington, DC: Council for Basic Education.

U.S. Congress, Office of Technology Assessment.  (1992, February).  Testing in American
schools: Asking the right questions (OTA-SET-519).  Washington, DC: U.S. Government
Printing Office.

U.S. Department of Education.  (1991).  America 2000: An education strategy.  Washington,
DC: U.S. Government Printing Office.

U.S. Department of Education.  (1998a).  Goals 2000: Reforming education to improve student
achievement.  Washington, DC: U.S. Government Printing Office.  Available: http://
www.ed.gov/pubs/G2KReforming/. [July 10, 2001].

U.S. Department of Education.  (1998b).  The educational system in Japan: Case study findings.
Washington, DC: U.S. Government Printing Office. Available: http://www.ed.gov/
pubs/JapanCaseStudy/. [July 10, 2001].

U.S. Department of Education.  (1999a).  The educational system in Germany: Case study findings.
Washington, DC: U.S. Government Printing Office. Available: http://www.ed.gov/
pubs/GermanCaseStudy/. [July 10, 2001].

Copyright © National Academy of Sciences. All rights reserved.



70 ADDING IT UP

U.S. Department of Education.  (1999b).  The educational system in the United States: Case
study findings.  Washington, DC: U.S. Government Printing Office.  Available: http://
www.ed.gov/pubs/USCaseStudy/. [July 10, 2001].

U.S. Department of Education, Mathematics and Science Expert Panel.  (1999).  Exemplary
and promising mathematics programs.  Washington, DC: Author.  Available: http://
www.enc.org/professional/federalresources/exemplary/. [July 10, 2001].

U.S. Department of Education, National Center for Education Statistics.  (2000a).
Mathematics and science in the eighth grade: Findings from the Third International Mathematics
and Science Study.  Washington, DC: U.S. Government Printing Office.  Available:
http://nces.ed.gov/timss/. [July 10, 2001].

U.S. Department of Education, National Center for Education Statistics.  (2000b).  Pursuing
excellence: Comparisons of international eighth-grade mathematics achievement from a U.S.
perspective, 1995 and 1999 (NCES 2001-028) by P. Gonzalez, C. Calsyn, L. Jocelyn, K.
Mak, D. Kastberg, S. Arafeh, T. Williams, W. Tsen.  Washington, DC: U.S. Government
Printing Office.  Available: http://nces.ed.gov/timss/. [July 10, 2001].

Weiss, I.  (1978).  Report of the 1977 National Survey of Science, Mathematics, and Social Studies
Education.  Research Triangle Park, NC: Research Triangle Institute.

Welch, W.  (1978).  Science education in Urbanville: A case study.  In R. Stake & J. Easley
(Eds.), Case studies in science education (pp. 5-1–5-33).  Urbana: University of Illinois.

Wilson, L. D., & Blank, R. K.  (1999).  Improving mathematics education using results from
NAEP and TIMSS.  Washington, DC: Council of Chief State School Officers.  Available:
http://publications.ccsso.org/ccsso/publication_detail.cfm?PID=212. [July 10, 2001].

Woodward, A., & Elliot, D. L.  (1990).  Textbook use and teacher professionalism.  In
Textbooks and schooling in the United States (Eighty-ninth Yearbook of the National Society
for the Study of Education, Part 1, pp. 178–193).  Chicago: University of Chicago
Press.

Zernike, K.  (2000, August 25).  Gap widens again on tests given to blacks and whites:
Disparity widest among the best educated.  The New York Times, p. A14.

Copyright © National Academy of Sciences. All rights reserved.



71

3
NUMBER:

WHAT IS THERE TO KNOW?

Seven.  What is seven?  Seven children; seven ideas; seven times in a row;
seventh grade; a lucky roll in dice; seven yards of cotton; seven stories high;
seven miles from here; seven acres of land; seven degrees of incline; seven
degrees below zero; seven grams of gold; seven pounds per square inch; seven
years old; finishing seventh; seven thousand dollars of debt; seven percent
alcohol; Engine No. 7; The Magnificent Seven.  How can an idea with one
name be used in so many different ways, denoting such various senses of
quantity?  Consider how different a measure of time (seven years) is from one
of temperature (seven degrees), how different a measure of length (seven
meters) is from a count (seven children), and how different either of these is
from a position (finishing seventh or being in seventh grade).  Even within
measures, some are represented as ratios (seven pounds per square inch, seven
percent alcohol) and others as simple units (seven miles, seven liters).
Although normally taken for granted, it is remarkable that seven, or any
number, can be used in so many ways.  That versatility helps explain why
number is so fundamental in describing the world.

This chapter surveys the domain of number.  It was developed in part in
response to the charge to the committee to describe the context of the study
with respect to the areas of mathematics that are important as foundations in
grades pre-K to 8 for building continued learning.  The intent of this chapter
is essentially mathematical; learning and teaching are treated elsewhere.  The
chapter does not set forth a curriculum for students but instead provides a
panoramic view of the territory on which the numerical part of the school
curriculum is built.  Nor is the chapter intended as a curriculum for teachers.
Instead, it identifies some of the crucial ideas about number that we think
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teachers should know.  Many of these ideas are treated in more detail in text-
books intended for prospective elementary school teachers.

A major theme of the chapter is that numbers are ideas—abstractions
that apply to a broad range of real and imagined situations.  Operations on
numbers, such as addition and multiplication, are also abstractions.  Yet in
order to communicate about numbers and operations, people need represen-
tations—something physical, spoken, or written.  And in order to carry out
any of these operations, they need algorithms: step-by-step procedures for
computation.  The chapter closes with a discussion of the relationship be-
tween number and other important mathematical domains such as algebra,
geometry, and probability.

Number Systems

At first, school arithmetic is mostly concerned with the whole numbers: 0,
1, 2, 3, and so on.1  The child’s focus is on counting and on calculating—
adding and subtracting, multiplying and dividing.  Later, other numbers are
introduced: negative numbers and rational numbers (fractions and mixed
numbers, including finite decimals).  Children expend considerable effort
learning to calculate with these less intuitive kinds of numbers.  Another
theme in school mathematics is measurement, which forms a bridge between
number and geometry.

Mathematicians like to take a bird’s-eye view of the process of develop-
ing an understanding of number.  Rather than take numbers a pair at a time
and worry in detail about the mechanics of adding them or multiplying them,
they like to think about whole classes of numbers at once and about the prop-
erties of addition (or of multiplication) as a way of combining pairs of num-
bers in the class.  This view leads to the idea of a number system.  A number
system is a collection of numbers, together with some operations (which, for
purposes of this discussion, will always be addition and multiplication), that
combine pairs of numbers in the collection to make other numbers in the
same collection.  The main number systems of arithmetic are (a) the whole
numbers, (b) the integers (i.e., the positive whole numbers, their negative coun-
terparts, and zero), and (c) the rational numbers—positive and negative ratios
of whole numbers, except for those ratios of a whole number and zero.

Thinking in terms of number systems helps one clarify the basic ideas
involved in arithmetic.  This approach was an important mathematical dis-
covery in the late nineteenth and early twentieth centuries.  Some ideas of
arithmetic are fairly subtle and cause problems for students, so it is useful to
have a viewpoint from which the connections between ideas can be surveyed.
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The Whole Numbers

One of the starting points of arithmetic is counting.  Children can find
out how many objects are in a collection by counting them: one, two, three, four,
five.  They also need zero to say that there is not any of some type of thing.2

Addition arises to simplify counting.  When children join two collections,
instead of recounting all the objects in the combined set, they add the num-
bers of objects in each of the original sets.  (I have five apples, and Dave has
three apples.  How many apples do we have together?)  Multiplication pro-
vides a further shortcut when children want to add many copies of the same
number.  (I have 10 boxes of cookies, with 12 cookies in each box.  How many
cookies do I have?)  The whole numbers, with the two operations of addition
and multiplication, form the whole number system, the most basic number sys-
tem.

It is important to take note that, although the whole numbers with their
operations are very familiar, they are already abstract.  Although counting is
usually done with some particular kind of things (apples or cats or dollars),
arithmetic can be independent of the things counted.  Five apples plus three
apples makes eight apples; five cats plus three cats makes eight cats; five
dollars plus three dollars makes eight dollars.  (A word of caution: when add-
ing, you must combine units of the same kind: five dollars plus three cats
does not make eight of anything in particular.)  This independence of the
results from whatever is being counted leads to the abstract operation called
addition.  It is similar with multiplication.  Note that the abstract nature of
the arithmetic operations is exactly what makes them useful.  If addition of
apples, of cats, and of dollars each required its own peculiar set of rules, people
would probably have no general concept of addition, just ideas about com-
bining each type of object in its own individual way.  Mathematics itself might
not exist.  Certainly, it would require a lot more work.

Appropriate to the abstract nature of arithmetic, each operation has sev-
eral concrete interpretations.  We introduced addition by means of its inter-
pretation in terms of combining sets of like objects.  Other interpretations are
often used.  One is the joining of segments of various lengths.  If Jane has a
rod 3 inches long, and another rod 5 inches long, she can lay them end to end
(or perhaps even attach them together) to get a rod 8 inches long.

This interpretation may seem the same, or almost the same, as the
combining-sets interpretation.  Indeed, it must be somewhat similar, since it
is a representation of addition.  But it differs in perhaps subtle ways.  For
example, inches can be subdivided into parts, which are hard to tell from the
wholes, except that they are shorter; whereas it is painful to cats to divide
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them into parts, and it seriously changes their nature.  Thus, joining rods will
support an extension of arithmetic into fractional quantities much more easily
than counting cats will.

3 + 5

6 6+ 6+6 +

4 × 6

Similarly, multiplication has multiple interpretations.  We introduced it
as adding the same number many times.  The set-combination interpretation
of multiplication would be to combine several essentially identical collec-
tions, such as the packages of cookies mentioned above.  If you think of addi-
tion in terms of joining rods, then multiplication would amount to joining
several rods of the same length end to end.  Thus, 4 × 6 can be visualized by
laying four rods of length six end to end, where you can think of each rod as a
little row of boxes.  A more compact way to arrange the rods would be to lay
them side by side rather than end to end.  This arrangement produces an
array of four rows of boxes with six boxes in each row, which may be called a
rectangular array interpretation of multiplication.  When the rods have height
one, there is an added benefit: The array looks like a rectangle of boxes, and
the area of the rectangle (measured in box areas) is just 4 × 6.  This is the area
interpretation of multiplication.

The multiple interpretations of the basic operations is symptomatic of a
general feature of mathematics—the tension between abstract and concrete.3

This tension is a fundamental and unavoidable challenge for school math-
ematics.  On the one hand, as we indicated above, the abstractness of math-
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ematics is an important reason for its usefulness: A single idea can apply in
many circumstances.  On the other hand, it is difficult to learn an idea in a
purely abstract setting; one or another concrete interpretation must usually
be used to make the idea real.  But having been introduced to a mathematical
concept by means of one interpretation, children then need to pry it away
from only that interpretation and take a more expansive view of the abstract
idea.  That kind of learning often takes time and can be quite difficult.  Some-
times the way in which a concept is first learned creates obstacles to learning
it in a more abstract way.  At other times, overcoming such obstacles seems to
be a necessary part of the learning process.

Properties of the Operations

Experience with the operations of addition and multiplication leads to
the observation of certain regularities in their behavior.  For example, it does
not matter in what order two numbers are added.  If I dump a basket of three
apples into a basket with five apples already in it, there will be eight apples in
the basket; and if I dump the basket of five apples into the basket with three,
I will also have eight.  Thus 5 + 3 = 8 = 3 + 5.  The similar fact is true for any two
numbers.  Thus, I know that 83,449 + 173,248,191 = 173,248,191 + 83,449 with-
out actually doing either addition.  I have used what is known as the commutative
law of addition.

When three numbers are to be added, there are several options.  To add 1
and 2 and 3, I can add 1 and 2, giving 3, and then add the original 3 to this, to
get 6.  Or I can add 1 to the result of adding the 2 and the 3.  This process
again gives 6.  These two ways of adding give the same final answer, although
the intermediate steps look quite different:

(1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3).
This statement of equality uses what is known as the associative law.  Again,

it holds for any three numbers.  I know that
(83,449 + 173,248,191) + 417 = 83,449 + (173,248,191 + 417)

without doing either sum.
The commutative and associative laws in combination allow tremendous

freedom in doing arithmetic.  If I want to add three numbers, such as 1, 2, and
3, there are potentially 12 ways to do it:

(1 + 2) + 3 (2 + 1) + 3 (1 + 3) + 2 (3 + 1) + 2 (2 + 3) + 1 (3 + 2) + 1
1 + (2 + 3) 2 + (1 + 3) 1 + (3 + 2) 3 + (1 + 2) 2 + (3 + 1) 3 + (2 + 1)
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Commutativity and associativity guarantee that all 12 ways of doing this
sum give the same answer—so it does not matter which one I do.  (For adding
four numbers, there are 120 (!) conceivable different schemes, all of which
again give the same result.)  This flexibility is very useful when students do
computations.  For example, 1 + 8 can be found by thinking of it as 8 + 1 and
then just recalling the next whole number after 8.  The standard procedures
for doing multidigit arithmetic also heavily exploit commutativity and
associativity.  However, the flexibility permitted by these rules also greatly
increases the challenges of teaching arithmetic.  When there are several ways
to do a calculation, it is virtually certain that students will produce the answer
more than one way.  A teacher must therefore have a sufficiently flexible
knowledge of arithmetic to evaluate the various student solutions, to validate
the correct ones, and to correct errors productively.

The commutative and associative laws also hold for multiplication (see
Box 3-1).  The commutativity of multiplication by 2 is also reflected in the
equivalence of the two definitions of even number typically offered by chil-
dren.  The “fair share” definition says that a number is even if it can be
divided into two equal parts with nothing left over (which may be written as
2 × m); the “pairing” definition says that a number is even if it can be divided
into pairs with nothing left over (m × 2).

In addition to these two laws for each operation, there is a rule, known as
the distributive law, connecting the two operations.  It can be written sym-
bolically as a × (b + c) = a × b + a × c.

An example would be 2 × (3 + 4) = 2 × 7 = 14 = 6 + 8 = 2 × 3 + 2 × 4.  A good
way to visualize the distributive law is in terms of the area interpretation of
multiplication.  Then it says that if I have two rectangles of the same height,
the sum of their areas is equal to the area of the rectangle gotten by joining
the two rectangles into a single one of the same height but with a base equal
to the sum of the bases of the two rectangles:

2  (3 + 4) 2  3 2 × 4= +××

The basic properties of addition and multiplication of whole numbers are
summarized in Box 3-1.
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Properties of the Arithmetic Operations

Commutativity of addition.  The order of the two numbers does not affect
their sum: 3 + 5 = 8 = 5 + 3.  In general, m + n = n + m.

Associativity of addition.  When adding three (or more) numbers, it does not mat-
ter whether the first pair or the last pair is added first: (3 + 5) + 4 = 8 + 4 = 12 = 3 +
9 = 3 + (5 + 4).  In general, (m + n) + p = m + (n + p).

Commutativity of multiplication.  The order of the two numbers does not affect
their product: 5 x 8 produces the same answer as 8 x 5.  In general, m x n = m x n.

Associativity of multiplication.  When multiplying three or more numbers, it does
not matter whether the first pair or the last pair is multiplied first: 3 x (5 x 4) is the
same as (3 x 5) x 4.  In general, (m x n) x p = m x (n x p).

Box 3-1

3 + 5 5 + 3

3 +

(3  +  5) + 4

(5  +  4)

5 × 8 8 × 5

Rotate

3 × (5 × 4) (3 × 5) × 4

continued
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Distributivity of multiplication over addition.  When multiplying a sum of two num-
bers by a third number, it does not matter whether you find the sum first and then
multiply or you first multiply each number to be added and then add the two prod-
ucts: 4 x (3 + 2) = (4 x 3) + ( 4 x 2).  In general, m x (n + p) = (m x n) + (m x p).

Question: Is subtraction commutative?

Answer: No.  For example, 6 – 2 = 4, but 2 – 6 = -4.

Question: Is subtraction associative?

Answer: No.  For example, (7 – 4) – 2 = 3 – 2 = 1, but 7 – (4 – 2) = 7 – 2 = 5.

∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇

4 × (3 + 2)

∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
∇  ∇  ∇
(4 × 3)

❏  ❏
❑  ❏
❏  ❏
❏  ❏

❏  ❏
❑  ❏
❏  ❏
❏  ❏

(4 × 2)+=

Subtraction and Division

So far we have talked only about addition and multiplication.  It is tradi-
tional, however, to list four basic operations: addition and subtraction, multi-
plication and division.  As implied by the usual juxtapositions, subtraction is
related to addition, and division is related to multiplication.  The relation is
in some sense an inverse one.  By this, we mean that subtraction undoes
addition, and division undoes multiplication.  This statement needs more
explanation.

Just as people sometimes want to join sets, they sometimes want to break
them apart.  If Eileen has eight apples and eats three, how many does she
have left?  The answer can be pictured by thinking of eight apples as com-
posed of two groups, a group of five apples and a group of three apples.  When
the three are taken away, the five are left.  In this solution, you think of eight
as 5 + 3, and then when you subtract the three, you are again left with five.
Thus subtracting three undoes the implicit addition of three and leaves you
with the original amount.  It is the same no matter what amount you start

Box 3-1 Continued
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with: 5 + 3 – 3 = 5; 9 + 3 – 3 = 9; 743 + 3 – 3 = 743.  More formally, subtracting
3 is the inverse of adding 3.

It is similar with division and multiplication.  Just as people sometimes
want to form sets of the same size into one larger set, they sometimes want to
break up a large set into equal-sized pieces.  If you think of 15 as 5 × 3, then
when you divide 15 by 3, you are again left with 5.  Thus division by 3 undoes
implicit multiplication by 3 and leaves you with the original amount.  It is the
same no matter what amount you start with: 5 ×  3 ÷ 3 = 5; 9 ×  3 ÷ 3 = 9;
743 ×  3 ÷ 3 = 743.  More formally, dividing by 3 is the inverse of multiplying
by 3.

Two interpretations of division deserve particular mention here.  If I have
20 cookies, and want to sort them into 5 bags, how many go in each bag?  This
is the so-called sharing model of division because I know in how many ways
the cookies are to be shared.  I can find the answer by picturing the 20 cookies
arranged in 5 groups of 4 cookies, which will be the contents of 1 bag.  If the
cookies originally came out of 5 bags of 4 each, when I put them back into
those bags, I will again have 4 in each.  Thus, division by 5 undoes multipli-
cation by 5, or division by 5 is the inverse of multiplication by 5.  The picture
below shows the sharing model for this situation.

1 2 3 4 5

To think about 20 ÷ 5, you could also use the measurement model: If I have
20 cookies that are to be packaged in bags of 5 each, how many bags will I
get?  In the sharing model (also called the partitioning model or partitive
division), you know the number of groups and seek the number in a group.
In the measurement model (also called quotative division), you know the
size of the groups and seek the number of groups.  The circled numbers in
the figures above and below illustrate a crucial difference between the two
models: the order in which the cookies are placed in bags.  In the sharing

Sharing 20 cookies among 5 bags
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model, the cookies are dealt into the bags one at a time; in the measurement
model, the cookies are counted out by complete bags.  When you deal with
actual cookies, the processes are quite different, but abstractly they are both
20 ÷ 5.  Note that because multiplication is commutative, 5 bags of 4 cookies
each is the same total number of cookies as 4 bags of 5 cookies each.  Eventually
students come to see the two kinds of division as interchangeable and use
whichever model helps them with a particular division problem.

1

2

3

4

5

Measuring 20 cookies into bags of 5 each

Subtraction and the Integers

We might summarize the story so far by saying that there are two pairs of
operations—addition and subtraction, and multiplication and division—and
these are inversely related in the sense described above.  However, this sum-
mary would not quite be correct.  In fact, subtraction is not actually an operation
on whole numbers in the same sense that addition is.  You can add any pair of
whole numbers together, and the result is again a whole number.  Some-
times, however, you cannot subtract one whole number from another.  If I
have three apples, and Bart asks for five, I can’t give them to him.  I just don’t
have five apples.  If I’m really supposed to give him five apples (maybe he
left five apples in my care, I ate two, and then he came back to reclaim his
apples), then I am in trouble.  This situation can be described by using negative
numbers: I have negative-two apples, meaning that after I give Bart all the
apples I have, I still owe him two.  What is happening mathematically is that
I have bumped up against a subtraction problem, 3 – 5, for which there is no
solution (in whole numbers).  Mathematicians respond by inventing a solution
for it, and they call the solution -2.

Thus, the desire to describe solutions for certain “impossible” subtrac-
tion problems leads to the invention of new numbers, the negative integers.4

Thanks to the negative integers, you can solve all whole number subtraction
problems.  But your problems are not over.  You soon find that you cannot be
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content simply to admire these new creations.  You get into situations in which
you want to do arithmetic with them also.  If I owe Bart two apples and I owe
Teresa four apples, how many apples do I owe all together—that is, what is
(-2) + (-4)?  If on Monday I get into a situation that leaves me two apples short
and this happens again on Tuesday and Wednesday, how many apples short
am I then—that is, what is 3 × (-2)?  Besides enlarging their idea of number,
people have had to extend the arithmetic operations to this new larger class
of numbers.  They have needed to create a new, enlarged number system.  The
new system, encompassing both positive and negative whole numbers, is called
the integers.

How do people decide what arithmetic in this extended system is (or
should be)?  How do they create recipes for adding and multiplying integers,
and what are the properties of these extended operations?  They have two
guides: (a) intuition and (b) the rules of arithmetic, as described above and in
Box 3-1.  Fortunately, the guides agree.

Consider first the intuitive approach: Think hard about a lot of different
cases and decide what is the right way to add and multiply in each one.  To
use intuition, you need to think in terms of some concrete interpretation of
arithmetic.  The yield of financial transactions is a good one for these pur-
poses.  Here negative amounts are money you owe, and positive amounts are
money that you have or are owed by someone else.  If you owe $2 to Joan and
$3 to Sammy, then you owe $5 to the two of them together.  So (-2) + (-3) = -5.  If
you owe $2 to three people, then you owe $6, so 3 × (-2) = -6.  If you have a
debt of $2 and someone takes it away, you have gained $2.  So -(-2) = 2.  If
someone takes three $2 debts away from you, the amount you owe is then $6
less than before, which means you have $6 more.  Therefore (-3) × (-2) = 6.
Continuing in this way, you can puzzle out what the sum, difference, or product
of any two integers should be.  The trouble with this approach is that it is
somewhat contrived and depends upon making decisions about how to inter-
pret each case in the particular context.5

Another approach6 is to use an exploratory method to reason how the op-
erations should extend from the whole numbers.  By extending the patterns in
the table below, you find that (-3) × (-2) = 6, just as was shown above in context.

3 + 2 = 5 3 – 2 = 1 3 × 2 = 6 (-3) × 2 = -6
3 + 1 = 4 3 – 1 = 2 3 × 1 = 3 (-3) × 1 = -3
3 + 0 = 3 3 – 0 = 3 3 × 0 = 0 (-3) × 0 = 0
3 + (-1) = 3 – (-1) = 3 × (-1) = (-3) × (-2) =
3 + (-2) = 3 – (-2) = 3 × (-2) = (-3) × (-2) =
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By means of somewhat lengthy reasoning, you can find out how to do arith-
metic with integers.  But are the regularities observed about the whole number
system (the rules in Box 3-1) still valid?  Going through the cases again will
show that they are.  So not only has the number system been extended from
the whole numbers to all integers, but the arithmetic in the larger system
looks very similar to arithmetic in the original one in the sense that these laws
are still valid.

Moreover, there are some new notable regularities that describe how the
new numbers are related to the original ones.  These are summarized in Boxes
3-2 and 3-3.

Something much more dramatic is also true.  One can show that, if the
goal is to extend addition and multiplication from the whole numbers to the
integers in such a way that the laws of arithmetic of Boxes 3-1 and 3-2 remain
true, then there is only one way to do it.  And the rules in Box 3-3 describe how
it has to work.  Recipes laboriously constructed by means of some sort of
concrete interpretation of negative numbers are all completely dictated by
this short list of rules of arithmetic.  This uniqueness is a striking exhibition
of the power of these rules—that they capture in a few general statements a
large chunk of people’s intuition about arithmetic.  The extension of whole
numbers to integers is an example of the axiomatic method in mathematics:
basing a mathematical system on a short list of key properties.  Its most famous
success is the Elements of Euclid for plane geometry.  Since Euclid’s time,
axiomatic schemes have been constructed to cover most areas of mathematics.

Another rather striking thing has happened during this extension from
whole numbers to (all) integers.  The reason for making the extension was to

Box 3-2

Additional Properties of Addition

Additive identity.  Adding zero to any number gives that number.  For example,
3 + 0 = 3 and 0 + 3 = 3.  In general, m + 0 = m, and 0 + m = m.

Additive inverse.  Every number has an additive inverse, also called an opposite.
The opposite is the unique number that, when added to that number, gives zero.
For example, the opposite of 3 is -3 because 3 + -3 = 0; the opposite of -4 is 4
because -4 + 4 = 0.  In general, -s is the unique solution m for s + m = 0.

The
extension of

whole
numbers to
integers is

an example
of the

axiomatic
method in

mathematics:
basing a

mathematical
system on a

short list
of key

properties.
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Box 3-3

Consequences of the Basic Properties: Formulas for
the Arithmetic of Negation

Subtraction and negation.  Subtracting a number is the same as adding its
opposite.  For example, 5 – 3 = 5 + (-3) and 5 – (-2) = 5 + 2.  In general,
s – t = s + (-t).

Multiplication and negation.  Negation is the same as multiplication by -1.
For example, -3 = (-1) x 3 and 2 = (-1) x (-2).  In general, -s = (-1) x s.

Opposite of opposite.  The opposite of the opposite of a number is the number
itself.  For example, -(-3) = 3.  In general, -(-s) = s.

be able to solve subtraction problems.  Now, in the integers, subtraction is a
true operation in the sense that you can subtract any integer from any other.
As described in the rule on additive inverses in Box 3-2, for every integer,
there is another integer, called its opposite or additive inverse, that counter-
balances it: the two sum to zero.  Thus 2 + (-2) = 0, and -84 + 84 = 0.  The
second equation means that -(-84) = 84 and leads to the rule on subtraction
and negation in Box 3-3, which says that subtracting an integer gives the same result
as adding its additive inverse.  Thus 2 – 3 = 2 + (-3), and 24 – (-7) = 24 + (-(-7)),
which is equal to 24 + 7 = 31.  Thus, at least on a conceptual level, subtraction
is merged into addition, and you really only need to have the single operation
of addition to capture all the arithmetic of addition and subtraction.  As soon
as subtraction is made into a true operation by extending the whole numbers
to the integers, you also get additive inverses, which allows you to subordi-
nate subtraction to addition.  This sort of simplification illustrates a kind of
mathematical elegance: Two ideas that seemed different can be subsumed
under one bigger idea.  As we show below, the analogous thing happens to
division when you construct rational numbers.  That subordination is the best
justification for why mathematicians talk about only the two operations of
addition and multiplication when discussing number systems, and not all four
operations recognized in school arithmetic.

Division and Fractions

Forgetting for a moment the triumph with integers, return to the whole
numbers and the problem of division.  Here the situation is in some sense
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much more complicated than for subtraction.  You can subtract in whole num-
bers about half the time.  However, division of one whole number by another
rarely comes out even.  If I have eight apples and want to share them equally
with Carl and Maria (the three of us), I either have to leave two apples out of
the division or have to cut them in pieces.  The desire to solve this kind of
problem leads to new numbers, the positive rational numbers.  These are usu-
ally written as fractions (here we allow improper fractions, such as 12

5
, in which

the numerator is larger than the denominator), and each one is a solution to a
division problem for integers.  For example, 2

3
 is the number you get when

you divide 2 into 3 equal parts.  In other words, 2
3

 is by definition the number
such that 3 × 2

3
= 2.  Although this definition suffices to specify fractions as

mathematical objects, fractions have many concrete interpretations.  We refer
the reader to the section “Discontinuities in Proficiency” in chapter 7 for a
list of such interpretations.

Again, having introduced these new numbers, you find yourself needing
to do arithmetic with them.  If I get half an apple from Bart and two thirds of
an apple from Teresa, how many apples do I have?  If I have 1 3

4
 boxes of

marbles, and I want to put them in boxes half as large, how many of the small
boxes will that make?  By figuring out the answers to these questions, you
turn the positive rational numbers (along with zero) into a number system,
with operations of addition and multiplication extending the old operations
on whole numbers.  This feat is difficult technically and conceptually.  The
arithmetic of, and even developing meanings for, fractions is one of the stum-
bling blocks of the pre-K to grade 8 mathematics curriculum.7

Nevertheless, if you go through the effort of constructing the arithmetic
of positive rational numbers by considering various cases and using some sort
of concrete model, as with the integers, you find that it can be done.  At the
end of your labors, being a mathematician, you survey the new system and
ask whether the marvelous rules of Box 3-1 still hold.  They do!  Moreover,
there are some further regularities, analogous to the rules of Box 3-2, that
relate the new numbers to the old.  The new rules for multiplication are listed
in Box 3-4.

The analogy with the construction of the integers is remarkable, with
multiplication replacing addition, and division replacing subtraction.  First,
the arithmetic in the laboriously constructed new system is entirely deter-
mined by the rules of Boxes 3-1 to 3-4.  This means that for the formulas of
adding, multiplying, and dividing (positive) rational numbers, as described in
Box 3-5, there really was no choice: That is the only way to do it and preserve
the rules.8  Furthermore, although the new system was created to allow divi-
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Box 3-4

Additional Properties of Multiplication

Multiplicative identity.  Multiplying a number by 1 gives that number: 5 x 1 = 5
and 1 x 5 = 5.  In general, m x 1 = m and 1 x m = m.

Multiplicative inverse.  Every number other than 0 has a multiplicative inverse,

also called a reciprocal.  The reciprocal is the unique number that, when

multiplied by that number, gives 1.  For example, the reciprocal of 3 is 1
3

because 3 x 1
3  = 1; the reciprocal of 5

8  is 8
5  because 5

8  x 8
5  = 1.  In general, for

s not zero, 1
s  is the unique solution m of s x m = 1.

sion, once you have it, you see that in some sense division is no longer neces-
sary.  In enabling division you have created a system in which every (nonzero)
number has a multiplicative inverse or reciprocal.  In this system, division by a
number (other than zero) is accomplished by multiplying by its reciprocal, which
is the source of the “invert and multiply” rule for dividing fractions.

The Rational Numbers

You have seen how a desire to solve subtraction problems with no solu-
tions in whole numbers leads to the construction of the integers.  In a very
similar way, the desire to solve division problems with no solutions in whole
numbers leads to the construction of the positive rational numbers (along
with zero).  But neither of these number systems does it all: There are some
integers that will not divide a given integer, and there are some positive ratio-
nal numbers that cannot be subtracted from a given positive rational number
(and still remain within the system).  Thus, if you want to be able to always
do both operations (except dividing by zero), you have to extend these sys-
tems further: You have to annex reciprocals to the integers, and you have to
annex negatives to the positive rationals.

That process involves a lot more work.  The end result, however, is as
elegant as one could wish.  It turns out that either procedure produces a sys-
tem in which all operations are possible, with additive inverses for all num-
bers and multiplicative inverses for all numbers except zero.  In this system,
subtraction of a number becomes addition of its additive inverse, and divi-
sion by a number becomes multiplication by its multiplicative inverse.  The
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Box 3-5

Consequences of the Basic Properties: Formulas for
the Arithmetic of Fractions

Fraction notation.  The fractions 3/2 and 3
2  are alternative ways of writing

3 ÷ 2.  For numbers m and n, with m not 0, both n/m and n
m  denote n ÷ m.

These are not defined when m = 0.

Reciprocal of reciprocal.  The reciprocal of the reciprocal of a number is the

number itself.  For example, 1 51
5

=  and 1 2
31

2
3

= . In general, for m and n not 0,

1
1
n
m

n
m

=

Equality.  For m and s not zero, n
m

t
s

=  is true exactly when n x s = m x t.

Addition of fractions.  Adding fractions requires that they have a common
denominator, which often requires conversion to equivalent fractions. When
fractions have a common denominator, their sum is the fraction whose
numerator is the sum of their numerators and whose denominator is the
common denominator.

For example, 2
3

4
5

2 5
3 5

4 3
5 3

2 5 4 3
3 5

22
15

+ = ×
×

+ ×
×

=
×( ) + ×( )

×
= .

In general, for m and s not zero, n
m

t
s

n s
m s

t m
s m

n s t m
m s

+ = ×
×

+ ×
×

=
×( ) + ×( )

×
.

Multiplication of fractions.  The product of two fractions is the fraction whose
numerator is the product of their numerators and whose denominator is the

product of their denominators.  For example, 2
3

5
7

2 5
3 7

10
21

× = ×
×

= .

 In general, for m and s not zero, n
m

t
s

n t
m s

× = ×
×

.

Division of fractions.  Dividing by a fraction is the same as multiplying by its

reciprocal.  For example, 2
3

5
7

2
3

7
5

2 7
3 5

14
15

÷ = × = ×
×

= .   In general, for m, s, and t not

zero, n
m

t
s

n
m

s
t

n s
m t

÷ = × = ×
×

.
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rules in Boxes 3-1 to 3-5 all hold.  In both systems, all arithmetic is deter-
mined by these rules.

Finally, the two procedures actually produce the same system.  The end
result is essentially the same, whether one first annexes the negatives and
then the fractions, or the other way around.  The hard part is making sure that
you can actually do it—that there really is a system in which you can add,
subtract, multiply, and divide, and where all the rules work in harmony to tell
you how to do it.  Mathematicians call this system the rational numbers.

Arithmetic into Geometry—The Number Line

The rational numbers are harder to visualize than the whole numbers or
even the integers, but there is a picture that lets you think about rational
numbers geometrically.  It lets you interpret whole numbers, negative num-
bers, and fractions all as part of one overall system.  Furthermore, it provides
a uniform way to extend the rational number system to include numbers such
as π and 2  that are not rational;9 it provides a link between arithmetic and
geometry; and it paves the way for analytic geometry, which connects algebra
and geometry.  This conceptual tool is called the number line.  It can be seen
in a rudimentary way in many classrooms, but its potential for organizing think-
ing about number and making connections with geometry seems not to have
been fully exploited.  Finding out how to realize this potential might be a
profitable line of research in mathematics education.

The number line is simply a line, but its points are labeled by numbers.
One point on the line is chosen as the origin.  It is labeled 0.  Then a positive
direction (usually to the right) is chosen for the line.  This choice amounts to
specifying which side of the origin will be the positive half of the line; the
other side is then the negative half.  Finally, a unit of length is chosen.  Any
point on the line is labeled by its (directed) distance from the origin mea-
sured according to this unit length.  The point is labeled positive if it is on the
positive half of the line and as negative if it is on the negative half.  The
integers, then, are the points that are a whole number of units to the left or
the right of the origin.  Part of the number line is illustrated below, with some
points labeled.10

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

The potential
for
organizing
thinking
about
number and
making
connections
with
geometry
seems not to
have been
fully
exploited.
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Rational numbers fit into this scheme by dividing up the intervals be-
tween the integers.  For example, 1

2  goes midway between 0 and 1, and 3
2

goes midway between 1 and 2.  The numbers 1
3

 and 2
3

 divide the interval
from 0 to 1 into three parts of equal length, and the numbers 7

3
 = 2 1

3
 and

8
3

 = 2 2
3

 divide the interval between 2 and 3 similarly.  If you locate fractions
with different denominators on the line, they may appear to be arranged some-
what irregularly.

However, if you fix a denominator, and label all points by numbers with
that fixed denominator, then you get an evenly spaced set, with each unit
interval divided up into the same number of subintervals.  Thus all rational
numbers, whatever their denominators, have well-defined places on the num-
ber line.  In particular, decimals with one digit to the right of the decimal
point partition each unit interval on the number line into subintervals of length

1
10

, and decimals with two digits to the right of the decimal point refine this
to intervals of length 1

100
, with 10 of these fitting into each interval of length

1
10

.  See Box 3-6.

2
1

3
1

3
2

5
1

4
1

5
2

5
3

4
3

4
2

5
40 1

Box 3-6

The Number System of Finite Decimals

Although they are not usually singled out explicitly, the finite decimals, such
as 3, -104, 21.6, 0.333, 0.0125, and 3.14159, form a number system in the
sense that you can add them and multiply them and get finite decimals.  You
can also subtract finite decimals, but you cannot always divide them.  For
example, 1

3  cannot be exactly represented as a finite decimal, although it
can be approximated by 0.333.  The finite decimal system is intermediate
between the integers and the rational numbers.

The advantage of working with finite decimals rather than all the rational
numbers is that the usual arithmetic for integers extends almost without
change.  The only complication is that one must keep track of the decimal
point.  (This seemingly small complication is actually a large conceptual
leap.)  For example,
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The finite decimal system does allow division by 10 (and by its divisors, 2 and
5), and it may be characterized as the smallest number system containing the
integers and allowing division by 10.  Indeed, another way of representing
finite decimals is as rational numbers with denominators that are powers of
10.  For example, 21.6 = 216/10 and 0.0125 = 125/10,000.

It may not seem a huge gain to be able to divide by 10.  What is the point of
enlarging the system of integers to the system of finite decimals?  It is that
arithmetic can remain procedurally similar to the arithmetic of whole numbers,
and yet finite decimals can be arbitrarily small and, as a consequence, can
approximate any number as closely as you wish.  This process is best illustrated
by using the number line.

The integers occupy a discrete set of points on the number line, each separated
from its neighbors on either side by one unit distance:

  104
× .333
  312
 312
312

34.632

 3.14159
+ .0125
 3.15409

The finite decimals with at most one digit to the right of the decimal point
label the positions between the integers at the division points:

If you allow two digits to the right of the decimal point, these tenths are
further subdivided into hundredths.

-1 0 1 2

-1 0 1 2.1 .2 .3 .4 .5 .6 .7 .8 .9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1

-1 0 1 2
1.41.33-.72

As you can see, space between these numbers is already rather small.  It
would be very difficult to draw a picture of the next division, defined by
decimals with three digits to the right of the decimal point.  Nonetheless,
you can imagine this subdivision process continuing on and on, giving finer
and finer partitions of the line.

continued

Copyright © National Academy of Sciences. All rights reserved.



90 ADDING IT UP

The potential of the number line does not stop at providing a simple way
to picture all rational numbers geometrically.  It also lets you form geometric
models for the operations of arithmetic.  These models are at the same time
more visual and more sophisticated than most interpretations.  Consider addi-
tion.  We have already mentioned that one way to interpret addition of whole
numbers is in terms of joining line segments.  Now you can refine that inter-
pretation by taking a standard segment of a given (positive) length to be the
segment of that length with its left endpoint at the origin.  Then the right

Geometrically, the digits in a decimal representation can be viewed as being
parts of an “address” of the number, with each successive digit locating it
more and more accurately.  Thus if you have the decimal 1.41421356237, the
integer part tells you that the number is between 1 and 2.  The first decimal
place tells you that the number is between 1.4 and 1.5.  The next place says
that the number is between 1.41 and 1.42.  The first decimal place specifies
the number to within an interval of 1

10 .  The second decimal place specifies
the number to within an interval of length 1

100 , and so on.

If you think of it in this way, you can imagine applying this “address system”
to any number, not just finite decimals.  For finite decimals the procedure
would effectively stop, with all digits beyond a given point being zero.  With a
number that is not a finite decimal, the process would go on forever, with
each successive digit giving the number 10 times more precision.  Thus, the
finite decimals give you a systematic method for approximating any number
to any desired accuracy.  In particular, although the reciprocal of an integer
will not usually be a finite decimal, you can approximate it by a finite decimal.
Thus, 1

3  is first located between 0 and 1, then between 0.3 and 0.4, then
between 0.33 and 0.34, and so on.

But once you have started allowing approximation, there is no need or reason
to restrict yourself to rational numbers.  All numbers on the number line—
even those that are not rational—can be approximated by finite decimals.  For
example, the number 2  is approximately 1.41421.  Expanding the rational
number system to include all numbers on the number line brings you to the
real number system.  Finite decimals give you access to arbitrarily accurate
approximate arithmetic for all real numbers.  That is one reason for their
ubiquitous use in calculators.

NOTE: The finite decimals, also called decimal fractions, were first discussed
by Stevin, 1585/1959.

Box 3-6 Continued
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endpoint will lie at the point labeled by the length of the segment.  To
encompass negative numbers, you must give your segments more structure.
You must provide them with an orientation—a beginning and an end, a head
and a tail.  These oriented segments may be represented as arrows.  The
positive numbers are then represented by arrows that begin at the origin and
end at the positive number that gives their length.  Negative numbers are
represented by arrows that begin at the origin and end at the negative num-
ber.  That way, 4 and -4, for example, have the same length but opposite
orientation.  (Note: For clarity, arrows are shown above rather than on the
number line.)

Suppose I want to compute 4 + 3 on the number line.  It is difficult to add
the arrows when they both begin at the origin:

But the arrows may be moved left or right, as needed, as long as they main-
tain the same length and orientation.  To add the arrows, I move the second
arrow so that it begins at the end of the first arrow.

-4 -3 -2 -1 0 1 2 3 4 5

4

-5

-4 -3 -2 -1 0 1 2 3 4 5-5

-4

-1 0 1 2 3 4 5

4

7 8 96

3

-1 0 1 2 3 4 5

4

7 8 96

3
7 The result of the addition is an 

arrow that extends from the 
beginning of the first arrow to 
the end of the second arrow.

This geometric approach is quite general: It works for negative integers and
rational numbers, although in the latter case it is hard to interpret the answer
in simple form without dividing the intervals according to a common denomi-
nator.
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Another method (see below) for illustrating addition on the number line
is simpler because it uses only one arrow.  The method is more subtle, how-
ever, because it requires that some numbers be interpreted as points and
others as arrows.

-4 -3 -2 -1 0 1 2 3 4 5

3

-5

-5
-23 + -5 = -2

6
30 16

4
6
5

6
1

6
2

3
1

2
1

+

2 3
116

5
=

-1 0 1 2 3 4 5 7 8 96

3

Interpret the first number as a
point and the second number as
an arrow.  Position the beginning
of the arrow at the point.  The
result of the addition is given by
the point at the end of the arrow.

-4 -3 -2 -1 0 1 2 3 4 5-5

-5

4 + 3 = 7

3 + -5 = -2

Numbers on the number line have a dual nature: They are simultaneously
points and oriented segments (which we represent as arrows).  A deep under-
standing of number and operations on the number line requires flexibility in
using each interpretation.  A principal advantage to this shorthand method
for addition is that it supports the idea that adding 3, for example, amounts to
moving the line (translating) three units to the right.  By similar reasoning,
adding -5 amounts to translating five units to the left.  In general, adding any
number may be interpreted as a translation of the line.  The size of the trans-
lation depends on the size of the number, and the direction of the translation
depends on its sign (i.e., positive or negative).

Multiplication on the number line is subtler than addition.  Multiplica-
tion by whole numbers, however, may be interpreted as repeated addition:
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-1 0 1 2 3 4 5 7 8 96

84 × 2
2 222

0 1 32

23
23 ×

2 2 2
3 3 3

In what way does multiplication transform the line?  Multiplication by 4,
for example, stretches the line so that all points are four times as far from the
origin as they previously were, given a constant unit.  Division by 4 (or multi-
plication by 1

4
) reverses this process, thereby shrinking the line.  Then mul-

tiplication by 3
5

, for example, may be interpreted as stretching by a factor of
3 and then shrinking by a factor of 5.  Multiplication by -1 takes positive
numbers to their negative counterparts and vice versa, which amounts to flip-
ping the line about the origin.

These geometric interpretations of addition and multiplication as trans-
formations of the line are quite sophisticated despite their pictorial nature.
Nonetheless, these interpretations are important because they provide a way
to picture the differences between addition and multiplication.  Furthermore,
the interpretations provide links between number, algebra, geometry, and
higher mathematics.

Nested Systems of Numbers

While the number line gives a faithful geometric picture of the real num-
ber system, it does not make it easy to see geometrically the expansion of the
number systems from whole numbers to integers to rationals, with each sys-
tem contained in the next.  The schematic picture in Box 3-7 illustrates how
the number systems are related as sets.  In the center is zero, surrounded on
the right by the positive whole numbers and on the left by their negative
counterparts.  Together they form the integers.  In the next larger circle are
the rationals, which include the integers as a subset.  In elementary school,
children begin with the right half of the innermost circle (the whole num-
bers) and then learn about the right half of the next larger circle (nonnegative
rationals).  In the middle grades, the two circles are completed with the intro-
duction of integers and negative rationals.  In the late middle grades or high
school, rationals are augmented to form real numbers.
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Reals

Rationals

Integers

0
-3

-27

π

32

1

645
-13

Negative Positive

2

7
25

-0.5

2.15

3
13-

3-

The Real Number System and Its Subsystems

Box 3-7

The number systems that have emerged over the centuries can be seen
as being built on one another, with each new system subsuming an old one.
This remarkable consistency helps unify arithmetic.  In school, however, each
number system is introduced with distinct symbolic notations: negation signs,
fractions, decimal points, radical signs, and so on.  These multiple representa-
tions can obscure the fact that the numbers used in grades pre-K through 8 all
reside in a very coherent and unified mathematical structure—the number
line.

Representations

In this chapter we are concerned primarily with the physical representa-
tions for number, such as symbols, words, pictures, objects, and actions.11

Physical representations serve as tools for mathematical communication,
thought, and calculation, allowing personal mathematical ideas to be exter-
nalized, shared, and preserved.12  They help clarify ideas in ways that support
reasoning and build understanding.  These representations also support the
development of efficient algorithms for the basic operations.13

Mathematics requires representations.  In fact, because of the abstract
nature of mathematics, people have access to mathematical ideas only through
the representations of those ideas.14  Although on its surface school math-
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ematics may seem to be about facts and procedures, much of the real intel-
lectual work in mathematics concerns the interpretation and use of represen-
tations of mathematical ideas.15  The discussion of number systems above,
for example, would have been impossible without the use of a variety of rep-
resentations of numbers and operations.

Mathematical ideas are essentially metaphorical.16  The section on num-
ber systems made liberal use of metaphors, including the following:

• number as collection, number as a point on a line, number as an arrow
• addition as joining, multiplication as area
• fraction as partitioning, fraction as piece, and fraction as number.

It has been argued that in mathematics “a new concept is the product of a cross-
breeding between several metaphors rather than of a single metaphor.”17  This claim
suggests that having multiple metaphors is a necessary condition for a con-
cept to be meaningful.

Because many mathematical representations are suggestive of the corre-
sponding metaphors, mathematical ideas are enhanced through multiple rep-
resentations, which serve not merely as illustrations or pedagogical tricks but
form a significant part of the mathematical content and serve as a source of
mathematical reasoning.  Even the numeral “729” is a representation that
embodies a significant amount of mathematical thinking and interpretation.

Numbers may be represented as physical objects, schematic pictures,
words, or abstract symbols.  For example, the number five may be represented
by collections of physical objects, such as five blocks or five beads, by means
of schematic (iconic) pictures like  or  , or by abstract sym-
bols like 5 or V.

Operations can also be represented.  In this chapter, for example, addi-
tion is represented by combining plates of cookies, by joining segments, and
by symbolic expressions such as 3 + 5.  Similarly, we represent multiplication
as repeated addition, as area, and symbolically as 4 × 6.  There is an inherent
ambiguity in the symbolic notation for operations that is both useful and dif-
ficult to grasp: the expression 3 + 5, for example, simultaneously represents a
process (an addition operation) and the result of that process (the number 8).
For division this distinction is sometimes made through different notations
(e.g., 164 ÷ 17 and 164/17), but in practice, these are often used as synonyms.18

When a child combines a plate of three cookies with a plate of five cookies,
he or she could use 3 + 5 as a representation of the physical situation.  Con-
versely, given the symbolic expression 3 + 5, the child could represent the

Mathematical
ideas are
enhanced
through
multiple
representations.
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mathematical idea by using plates of cookies.  Whether the symbols repre-
sent the concrete objects or vice versa depends upon where the child starts.
Both symbols and objects, however, represent a mathematical idea that is
independent of the particular representation used.

The remainder of this section considers one particular representation
system for numbers, the decimal place-value system, which is a significant
human achievement.  It should be emphasized, however, that representation
systems arise out of human activity, and much mathematical insight can be
gained by considering the genesis and development of the representation
systems of the Egyptians, the Babylonians, the Mayans, or other cultures.
Our intent here is more modest: to describe issues of mathematical represen-
tation by focusing on the representation system that is the major focus of
school mathematics.  It should also be emphasized that a representation sys-
tem discussed previously, the number line, also deserves significant attention.
In fact, the main unifying and synthesizing point of the previous section was
that the number systems of school mathematics, which remain often frag-
mented and disjointed in the perceptions conveyed by school curricula, are
in fact all subsystems of a single system, which has a geometric model that is
the foundation of later analysis and geometry.

Grouping and Place Value

To use numbers effectively, to speak about them, or to manipulate them
requires that they have names.  Modern societies use decimal place-value
notation in daily life and commerce.  With just 10 symbols—0, 1, 2, . . . , 9—
any number, no matter how big or small in magnitude, can be represented.
For example, there are roughly 300,000,000 people in the United States.  Or
the diameter of the nucleus of an atom of gold is roughly 0.00000000034 centi-
meters.  The decimal system is versatile and simple, although not necessarily
obvious or easily learned.  The decimal place-value system is one of the most
significant intellectual constructs of humankind, and it has played a decisive
role in the development of mathematics and science.

Over the centuries, various notational systems have been invented for
naming numbers.  To represent numbers symbolically, the ancient Hindus
developed a numeration system that is based on the principles of grouping19

and place value, and that forms the basis for our numeration system today.  In
this system, objects are grouped by tens, then by tens of tens (hundreds), and
so on.  Hence, this numeration system is a base-10 or decimal system.  These
are nontrivial ideas that took humankind many centuries to invent and refine.
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Early versions of these ideas were present in Roman numerals, for example,
where 729 would be represented as DCCXXIX (D = 500, C = 100, X = 10,
and I = 1).  Although Roman numerals use grouping by tens and the interpre-
tation of a numeral depends to some extent on the placement of the symbols,20

they do not at all constitute a place-value system.  Also, the system of Roman
numerals is ad hoc, in the sense that each new grouping requires a new symbol,
so it is strictly limited in extent.  A crucial steppingstone in the development
of place-value notation was the idea of using a separate symbol to denote
zero, which could then be used as a placeholder when necessary.  This inven-
tion allows the same symbols to be used over and over to describe larger and
larger groups.

Since the grouping is by tens, only 10 symbols, the digits 0 through 9, are
needed to indicate how many groups there are of a particular size.  In a numeral
the size of the group depends on the place that the digit appears in the numeral.
Thus, in 729 the “7” represents seven hundreds, whereas in 174 the “7”
means seven tens.

Some pictorial and physical representations can be helpful in understand-
ing the decimal place-value system.  Special blocks, called base-10 blocks, for
example, can be used to develop and support an understanding of the impor-
tance of tens and hundreds and the meaning of the various digits.  The number
729 is pictured with base-10 blocks below.

700 + 20 + 9
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The composition of 729 shown above might be expressed symbolically
as follows:

729 = 700 + 20+ 9
       = (7 × 100) + (2 × 10) + (9 × 1)
       = (7 × 102) + (2 × 10) + (9 × 1)

The symbol 102 means 10 × 10.  In this case, 2 is called the exponent, and
102 is 10 to the second power.  Making the meaning of the digits explicit in a
larger number requires the use of higher powers of 10.  For example,

39,406 = (3 × 10,000) + (9 × 1,000) + (4 × 100) + (0 × 10) + 6
= (3 × 104) + (9 × 103) + (4 × 102) + (0 × 10) + (6 × 1)

A number in the decimal system is the sum of the products of each digit and
an appropriate power of 10, where the power in question corresponds to the
position of the digit.

The system is general enough to represent any whole number, no matter
how large.21  Furthermore, it is quite concise, requiring only nine digits to represent
the population of the United States, and only 10 digits to represent the popu-
lation of the entire earth.  This conciseness, however, presents a challenge to
young learners as they try to understand this compact notational system.

Extending the decimal system to the right of the decimal point is accom-
plished by analogy.  As you move to the left, the value of the place is multi-
plied by 10: 1, 10, 100, 1,000, and so on.  As you move to the right, this sequence
is reversed, so that the value is divided by 10.  Continuing past the units
(ones) place and over the decimal point, you continue dividing by 10, to reach
places for tenths, hundredths, thousandths, and so on.  A rational number
such as 3

8
, therefore, is written as 0.375, in perfect analogy with the notation

for whole numbers: The number is the sum of the product of each digit to the
right of the decimal point with the appropriate reciprocals (see Box 3-4) of
powers of 10.
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The values of the digits are sometimes shown in a place-value chart, in
which 5620.739 might be represented as follows:
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Because the reciprocals of powers of 10 become smaller in magnitude as
their exponents get larger in absolute value, such decimal representations
can describe quantities that are arbitrarily small.  Consequently, any positive
number, no matter how small in magnitude, can be represented by a decimal.

Choosing and Translating Among
Representations

To represent numbers that are not whole numbers, one could choose a
fractional rather than a decimal representation.  Representational choices are
much broader, however, than whether to use decimals or fractions.  In the
previous section, for example, we used points and arrows on the number line
to indicate fractions, integers, and operations on integers.  Fractional values
are often represented with pictures, and relationships between quantities are
often represented with graphs or tables.  Communicating about mathemati-
cal ideas, therefore, requires that one choose representations and translate
among them.  Such choices depend on balancing such characteristics as the
following:

• Transparency.  How easily can the idea be seen through the
representation? Base-10 blocks, for example, are more transparent than
a number line for understanding the decimal notation for whole num-
bers, whereas the decimal numerals themselves are not at all trans-
parent.

• Efficiency.  Does the representation support efficient com-
munication and use?  Is it concise?  Symbolic representations are more
efficient than base-10 blocks.

Copyright © National Academy of Sciences. All rights reserved.



100 ADDING IT UP

Box 3-8

Clarity of Representations

For simplicity of use, representations should be as clear and unambiguous as
possible.  Much of that clarity is not inherent in the representation, however,
but is established through convention.  For example, the expression 3 + 4 × 5 is
ambiguous on its face because there is no explicit indication of whether to
perform the multiplication or the addition first.*  One might be tempted to
proceed simply from left to right.  The conventional order of operations,
however, dictates that multiplication and division precede addition and
subtraction, so 3 + 4 × 5 is evaluated as 23 = 3 + (4 × 5) and not 35 = (3 + 4) × 5.
In the middle grades and high school, as algebraic symbolism is introduced,
the letter x and the multiplication symbol × can be confused, especially in written
(rather than typeset) work.  This ambiguity is solved in part by omitting
multiplication signs, using parentheses or juxtaposition instead.  Thus, xy means
x times y, and 5(3) means 5 times 3.

But that practice creates another ambiguity.  In the notation for mixed numbers,

3 2
5

 means 3 2
5

+ .  It does not mean 3 2
5

× . Furthermore, juxtaposing symbols

to indicate multiplication creates confusion in high school mathematics with
the introduction of function notation, where f (4) looks like multiplication but
instead means the output of the function f when the input value is 4.  The
ambiguities of such standard notations can interfere with learning if they are
not acknowledged, explained, developed, and understood.

*Try a few different calculators.  Scientific calculators typically perform the multiplica-
tion first, but simpler “four-function” calculators usually perform the addition first.

• Generality.  Does the representation apply to broad classes
of objects?  Finger representations are not general.  The number line
is quite general, allowing the representation of counting numbers,
integers, rationals, and reals.  If digits on both sides of the decimal
point are included, the decimal place-value representation of num-
bers is completely general in the sense that any number may be so
represented.

• Clarity.  Is the representation unambiguous and easy to use?
Representations should be clear and unambiguous, but that is often
established by convention—how the representation is commonly
used.  (See Box 3-8.)
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0 1 2
1

7/14 0.5 50%

• Precision.  How close is the representation to the exact value?
Graphs are usually not very precise.  With enough digits to the right of
the decimal point, decimal representation can be as precise as desired.

Consider the following representations for one-half:

And one-half is the simplest fraction.  Much more is involved in understand-
ing and translating among representations of 13

40
, or rational numbers more

generally.  (See Box 3-9 for an example.)

Translating Among Representations: An Example

Perhaps the deepest translation problem in pre-K to grade 8 mathematics
concerns the translation between fractional and decimal representations of
rational numbers.  Successful translation requires an understanding of rational
numbers as well as decimal and fractional notation—each of which is a
significant and multifaceted idea in its own right.  In school, children learn a

standard way of converting a fraction such as 3
8  to a decimal by long division.

The first written step of the long division is dividing 30 tenths by 8.  After three
divisions, the process stops because the remainder is zero.  The quotient
obtained, 0.375, is said to be a finite (or terminating) decimal because the
number of digits is finite.

Box 3-9

   .375
8  3.000
  2 4

    60
    56

     40
     40

      0

  .285714
7  2.000000

7
        30

        

        28
         2

       10

      50
49

    60

     40

  14

    56

     35

      

continued
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Understanding a mathematical idea thoroughly requires that several pos-
sible representations be available to allow a choice of those most useful for
solving a particular problem.  And if children are to be able to use a multiplicity
of representations, it is important that they be able to translate among them,
such as between fractional and decimal notations or between symbolic repre-
sentations and the number line or pictorial representations.

Algorithms

Addition is an idea—an abstraction from combining collections of ob-
jects or from joining lengths.  Carrying out the addition of two numbers re-
quires a strategy that will lead to the result.  For single-digit numbers it is
reasonable to use or imagine blocks or cookies, but for multidigit numbers
you need something more efficient.  You need algorithms.

The long division of 2 ÷ 7 is more complicated.  The remainder at the seventh
step is 2, which is where the first step began.  Because there will always be
another 0 to “bring down” in the next place, the sequence of remainders (2,
6, 4, 5, 1, 3) will repeat, as will the digits 285714 in the quotient.  Thus,
2
7

0 285714= . , a repeating decimal, where the horizontal bar is used to
indicate which digits repeat.

The process of using long division to obtain the decimal representation of a
fraction will always be like one of the above cases: Either the process will
stop or it will cycle through some sequence of remainders.  So the decimal
representation of a rational number must be either a repeating or a
terminating decimal.  Thus a nonrepeating decimal cannot be a rational

number and there are many such numbers, such as π and 2 .

*In the process of converting a fraction to a decimal, all remainders must be less than
the denominator of the fraction.  Because the list of possible remainders is finite, and
because each subsequent step is always the same (brings down a 0, etc.), the remain-
ders must eventually repeat.  The fraction 2/7 had six remainders (the maximum) and
repeated in six digits.  Other examples: 1/11 repeats in two digits, 1/13 repeats in six
digits, and 1/17 repeats in 16 digits.

Box 3-9 Continued
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An algorithm is a “precisely-defined sequence of rules telling how to pro-
duce specified output information from given input information in a finite
number of steps.”22  More simply, an algorithm is a recipe for computation.23

Most people know algorithms for doing addition, subtraction, multiplication,
and division with pencil and paper.  There are many such algorithms, as well
as others that do not use pencil and paper.  Years ago many people knew algo-
rithms for computation on fingers, slide rules, and abacuses.  Today, calculators
and computer algorithms are widely used for arithmetic.  (Indeed, a defining
characteristic of a computational algorithm is that it be suitable for implemen-
tation on a computer.)  And in fact, most of algebra, calculus, and even more
advanced mathematics may now be done with computer programs that per-
form calculations with symbols.

When confronted with a need for calculation, one must choose an algo-
rithm that will give the correct result and that can be accomplished with the
tools available.  Algorithms depend upon representations.  (Note, for example,
that algorithms for fractions are different from algorithms for decimals.)  And
as was the case for representations, choosing an algorithm benefits from con-
sideration of certain characteristics: transparency, efficiency, generality, and preci-
sion.  The more transparent an algorithm, the easier it is to understand, and a
child who understands an algorithm can reconstruct it after months or even
years of not using it.  The need for efficiency depends, of course, on how
often an algorithm is used.  An additional desired characteristic is simplicity
because simple algorithms are easier to remember and easier to perform ac-
curately.  Again, the key is finding an appropriate balance among these char-
acteristics because, for example, algorithms that are sufficiently general and
efficient are often not very transparent.  It is worth noting that pushing but-
tons on a calculator is the epitome of a nontransparent algorithm, but it can
be quite efficient.  In Box 3-10, we show some examples of algorithms with
various qualities.

Algorithms are important in school mathematics because they can help
students understand better the fundamental operations of arithmetic and im-
portant concepts such as place value and also because they pave the way for
learning more advanced topics.  For example, algorithms for the operations
on multidigit whole numbers can be generalized (with appropriate modifica-
tions) to algorithms for corresponding operations on polynomials in algebra,
although the resulting algorithms do not look quite like any typical multipli-
cation algorithms but rather are based upon the idea behind such algorithms:
computing and recording partial products and then adding.  The polynomial
multiplication illustrated below, for example, is somewhat like multiplication

An algorithm
is a recipe
for
computation.
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Examples of Algorithms

The decimal place-value system allows many different algorithms for the four
main operations.  The following six algorithms for multiplication of two-digit
numbers were produced by a class of prospective elementary school teachers.
They were asked to show how they were taught to multiply 23 by 15:

In Method 6, sometimes called lattice multiplication,* the factors are written
across the top and on the right, the products of the pairs of digits are put into

the cells (for example, 15 is written
 5

1 ), and the numbers in the diagonals

are added to give the product underneath.

Note that all of these algorithms produce the correct answer.  All except Method
4 are simply methods for organizing the four component multiplications and

23
× 15
115

23

345

23
× 15

45
30

345

23
× 15

15
100
30

200

345

23 × 15
23 × 30 = 690
       ÷  2 = 345

23 × 10 = 230
23 ×  5 = 115

                 345

2 3

1

5

2

5
11

0

543

3

Box 3-10

of whole numbers, but the relationship is hard to see, mostly because there is
no “carrying,” from the x to the x2 term, for example.  The expanded method
below shows the relationship a bit more clearly.

15132

32

1510

5

32

2

2

++

+

+

+

+

xx

xx
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x

x

Multiplying polynomials

23

× 15

115

23

345

Multiplication

15130200

30200

15100

51015

32023

++

+

+

+=×
+=

Expanded method

= 345

*The method is also called gelosia multiplication and is related to the method of Napier’s
rods or bones, named after the Scottish mathematician John Napier (1550–1617).
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adding.  The algorithms can be verified by decomposing the factors according
to the values of their digits (in this case, 23 = 20 + 3 and 15 = 10 + 5) and using
the distributive law in one of several ways:

23 × 15 = 23 × (10 + 5)

= 23 × 10 + 23 × 5 Methods 1 and 5

= 230 + 115

23 × 15 = (20 + 3) × 15

= 20 × 15 + 3 × 15 Method 2

= 300 + 45

23 × 15 = (20 + 3) × (10 + 5)

= 20 × 10 + 20 × 5 + 3 × 10 + 3 × 5 Methods 3 and 6

= 200 + 100 + 30 + 15

A more compelling justification uses the area model of multiplication.  If the
sides of a 23 × 15 rectangle are subdivided as 20 + 3 and 10 + 5, then the area of
the whole rectangle can be computed by summing the areas of the four smaller
rectangles.

20 3

10

5

200

100

30

15

Note the correspondence between the areas of the four smaller rectangles and
the partial products in Method 3.  With more careful examination, it is possible
to see the same four partial products residing in the four cells in Method 6.
(The 2 in the upper left cell, for example, actually represents 200.)  Methods 1,

continued
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Building Blocks

The preceding sections have described concepts in the domain of num-
ber that serve as fundamental building blocks for the entire mathematics cur-
riculum.  Other fundamental ideas—such as those about shape, spatial rela-
tionships, and chance—are foundational as well.  Students do not need to,
and should not, master all the number concepts we have described before
they study other topics.  Rather, number concepts should serve to support
mathematics learning in other domains as students are introduced to them,
and, conversely, these other domains should support students’ growing under-
standing of number.

2, and 5 differ from these only in that they record the areas for one pair of
these rectangles at a time.

Any of the methods—and, in fact, any of the four justifications that followed—
could serve as the standard algorithm for the multiplication of whole numbers
because they are all general and exact.  Mathematically, these methods are
essentially the same, differing only in the intermediate products that are
calculated and how they are recorded.

These methods, however, are quite different in transparency and efficiency.
Methods 3 and 5 and the area model justification are the most transparent
because the partial products are all displayed clearly and unambiguously.  The
three justifications using the distributive law also show these partial products
unambiguously, but some of the transparency is lost in the maze of symbols.
Methods 1 and 2 are the most efficient, but they lack some transparency because
the 23 and the 30 actually represent 230 and 300, respectively.

Method 4 takes advantage of the fact that doubling the factor 15 gives a factor
that is easy to use.  It is quite different from the others.  For one thing, the
intermediate result is larger than the final answer.  This method can also be
shown to be correct using the properties of whole numbers, since multiplying
one factor by 2 and then dividing the product by 2 has no net effect on the final
answer.  The usefulness of Method 4 depends on the numbers involved.
Doubling 15 gives 30, and 23 × 30 is much easier to calculate mentally than
23 × 15.  Using this method to find a product like 23 × 17, on the other hand,
would require first calculating 23 × 34, which is no easier than 23 × 17.  Clearly
this method, although completely general, is not very practical.  For most
factors, it is neither simple nor efficient.

Box 3-10 Continued
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Number is intimately connected with geometry, as illustrated in this
chapter by our use of the number line and the area model of multiplication.
Those same models of number can, of course, arise when measurement is
introduced in geometry.  The connection between number and algebra is
illustrated in the chapter by our use of algebra to express properties of number
systems and other general relationships between numbers.  The links from
number to geometry and to algebra are forged even more strongly when stu-
dents are introduced to the coordinate plane, in which perpendicular number
lines provide a system of coordinates for each point—an idea first put forward
by the French mathematician and philosopher René Descartes (1596–1650),
although he did not insist that the number lines were perpendicular.  Number
is also essential in data analysis, the process of making sense of collections of
numbers.  Using numbers to investigate processes of variation, such as accu-
mulation and rates of change, can provide students with the numerical under-
pinnings of calculus.

Some of the manifold connections and dependencies between number
and other mathematical domains may be illustrated by the so-called hand-
shake problem:

If eight people are at a party and each person shakes hands exactly once with every
other person, how many handshakes are there?

This problem appears often in the literature on problem solving in school
mathematics, probably because it can be solved in so many ways.  Perhaps
the simplest way of getting a solution is just to count the handshakes system-
atically: The first person shakes hands with seven people; the second person,
having shaken the first person’s hand, shakes hands with six people whose
hands he or she has not yet shaken; the third person shakes hands with five
people; and so on until the seventh person shakes hands with only the eighth
person.  The number of handshakes, therefore, is 7 + 6 + 5 + 4 + 3 + 2 + 1,
which is 28.

This method of solution can be generalized to a situation with any number
of people, which is what a mathematician would want to do.  For a party with
20 people, for example, there would be
19 + 18 + 17 + 16 + 15 + 14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
handshakes, but the computation would be more time consuming.  Because
mathematicians are interested not only in generalizations of problems but
also in simplifying solutions, it would be nice to find a simple way of adding
the numbers.  In general, for m + 1 people at a party, the number of hand-
shakes would be the sum of the first m counting numbers:24
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1 + 2 + .  .  .  + m.
Numbers that arise in this way are called triangular numbers because they

may be arranged in triangular formations, as shown below.

A closely related numerical approach to the problem of counting hand-
shakes comes from a story told of young Carl Friedrich Gauss (1777–1855),
whose teacher is said to have asked the class to sum the numbers from 1 to
100, expecting that the task would keep the class busy for some time.  The
story goes that almost before the teacher could turn around, Gauss handed in
his slate with the correct answer.  He had quickly noticed that if the numbers
to be added are written out and then written again below but in the opposite

Therefore, 3, 6, 10, 15, 21, and 28 are all triangular numbers.  This is a
geometric interpretation, but can geometry be used to find a solution to the
handshake problem that would simplify the computation?

One way to approach geometrically the problem of adding the numbers
from 1 to m is to think about it as a problem of finding the area of the side of
a staircase.  The sum 1 + 2 + 3 + 4 + 5 + 6 + 7, for example, would then be seen
as a staircase of blocks in which each term is represented by one layer, as in
the diagram on the left below.  The diagram on the right below includes a
second copy of the staircase, turned upside down.  When the two staircases
are put together, the result is a 7 × 8 rectangle, with area 56.  So the area of the
staircase is half that, or 28.  This reasoning, although specific, supports a gen-
eral solution for the sum of the whole numbers from 1 to m: m(m + 1)/2.
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order, the combined (double) sum may be computed easily by first adding
the pairs of numbers aligned vertically and then adding horizontally.  As can
be seen below, each vertical sum is 101, and there are exactly 100 of them.  So
the double sum is 100 × 101, or 10,100, which means that the desired sum is
half that, or 5050.

For the original handshake problem, which involves the sum of the blocks
in the staircase above, that means taking the double sum 7 × 8, or 56, and
halving it to get 28.

The handshake problem can be approached by bringing in ideas from
other parts of mathematics.  If the people are thought of as standing at the
vertices of an eight-sided figure (octagon), then the question again becomes
geometric but in a different way: How many segments (sides and diagonals)
may be drawn between vertices of an octagon?  The answer again is 28, as can
be verified in the picture below.

011101101101101101

1009998321

1239899100

++++++

++++++
++++++

L

L

L

As often happens in mathematics, connections to geometry provide a new
way of approaching the problem: Each vertex is an endpoint for exactly
7 segments, and there are 8 vertices, which sounds like there ought to be
7 × 8 = 56 segments.  But that multiplication counts each segment twice
(once for each endpoint), so there are really half as many, or 28, segments.

In still another mathematical domain, combinatorics—the study of count-
ing, grouping, and arranging a finite number of elements in a collection—the
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problem becomes how to count the number of ways to choose two items
(people shaking hands) from a collection of eight elements.  For example, in
how many ways can a committee of two be chosen from a group of eight
people?  This is the same as the handshake problem because each committee
of two corresponds to a handshake.  It is also the same as the octagon problem
because each committee corresponds to a segment (which is identified by its
two endpoints).

A critically important mathematical idea in the above discussion lies in
noticing that these are all the same problem in different clothing.  It also
involves solving the problem and finding a representation that captures its
key features.  For students to develop the mathematical skill and ability they
need to understand that seemingly different problems are just variations on
the same theme, to solve the problem once and for all, and to develop and
use representations that will allow them to move easily from one variation to
another, the study of number provides an indispensable launching pad.

Key Ideas About Number

In this chapter, we have surveyed the domain of number with an eye
toward the proficiency that students in grades pre-K to 8 need for their future
study of mathematics.  Several key ideas have been emphasized.  First,
numbers and operations are abstractions—ideas based on experience but inde-
pendent of any particular experience.  The numbers and operations of school
mathematics are organized as number systems, and each system provides ways
to consider numbers and operations simultaneously, allowing learners to focus
on the regularities and the structure of the system.  Despite different notations
and their separate treatment in school, these number systems are related
through a process of embedding one system in the next one studied.  All the
number systems of pre-K to grade 8 mathematics lie inside a single system
represented by the number line.  Second, all mathematical ideas require rep-
resentations, and their usefulness is enhanced through multiple representa-
tions.  Because each representation has its advantages and disadvantages, one
must be able to choose and translate among representations.  The number
line and the decimal place-value system are important representational tools
in school mathematics, but students should have experience with other use-
ful interpretations and representations, which also are important parts of the
content.  Third, calculation requires algorithms, and once again there are
choices to make because each algorithm has advantages and disadvantages.
And finally, the domain of number both supports and is supported by other

Copyright © National Academy of Sciences. All rights reserved.



1113 NUMBER: WHAT IS THERE TO KNOW?

branches of mathematics.  It is these connections that give mathematics much
of its power.  If students are to become proficient in mathematics by eighth
grade, they need to be proficient with the numbers and operations discussed
in this chapter, as well as with beginning algebra, measure, space, data, and
chance—all of which are intricately related to number.

Notes

1. Some authors (see, e.g., Russell, 1919, p. 3; Freudenthal, 1983, pp. 77ff) call these
the natural numbers.  We are adopting the common usage of the U.S. mathematics
education literature, in which the natural numbers begin 1, 2, 3, and so on, and the
whole numbers include zero.

2. The recognition that zero should be considered a legitimate number—rather than
the absence of number—was an important intellectual achievement in the history of
mathematics.  Zero (as an idea) is present in the earliest schooling, but zero (as a
number) is a significant obstacle for some students and teachers.  “Zero is nothing,”
some people say.  “How can we ask whether it is even or odd?”

3. “To criticize mathematics for its abstraction is to miss the point entirely.  Abstraction
is what makes mathematics work.  If you concentrate too closely on too limited an
application of a mathematical idea, you rob the mathematician of his [or her] most
important tools: analogy, generality, and simplicity” (Stewart, 1989, p. 291).

4. Although negative numbers are quite familiar today, and part of the standard
elementary curriculum, they are quite a recent development in historical terms, having
become common only since the Renaissance.  Descartes, who invented analytic
geometry and after whom the standard Cartesian coordinate system on the plane is
named, rejected negative numbers as impossible.  (His coordinate axes had only a
positive direction.)  His reason was that he thought of numbers as quantities and
held that there could be no quantity less than nothing.  Now, however, people are
not limited to thinking of numbers solely in terms of quantity.  In dealing with negative
numbers, they have learned that if they think of numbers as representing movement
along a line, then positive numbers can correspond to movement to the right, and
negative numbers can represent movement to the left.  This interpretation of numbers
as oriented length is subtly different from the old interpretation in terms of quantity,
which would here be unoriented length, and gives a sensible and quite concrete way
to think about these numbers that Descartes thought impossible.

5. Freudenthal, 1983, suggests that “negative numbers did not really become important
until they appeared to be indispensable for the permanence of expressions, equations,
formulae in the ‘analytic geometry’” (p. 436).  “Later on arguments of content
character were contrived . . . although some of them are not quite convincing
(positive-negative as capital-debt, gain-loss, and so on)” (p. 435).

6. See Freudenthal, 1983, p. 435.
7. Although rational numbers seem to present more difficulties for students than

negative integers, historically they came well before.  The Greeks were comfortable
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with positive rational numbers over 2000 years before negative numbers became
accepted.  See also Behr, Harel, Post, and Lesh, 1992.

8. The rules are in a sense guided by the fractional notation, a/b.  In other notational
systems, such as decimal representation, the rules will look somewhat different,
although they will be equivalent.

9. These numbers (and many others) are not rational because they cannot be expressed
as fractions with integers in the numerator and denominator.

10. In the number-line illustrations throughout this chapter, the portion displayed and
the scale vary to suit the intent of the illustration.  That is reasonable not just because
one can imagine moving a “lens” left and right and zooming in and out, but also
because the ideas are independent of the choice of origin and unit.

11. Bruner, 1966 (pp. 10–11), suggests three ways of transforming experience into models
of the world: enactive, iconic, and symbolic representations.  Enactively, addition
might be the action of combining a plate of three cookies with a plate of five cookies;
iconically, it might be represented by a picture of two plates of cookies; symbolically,
it might be represented as 5 cookies plus 3 cookies, or merely 5 + 3.

12. Greeno and Hall, 1997.
13. Pimm, 1995, suggests that people seek representational systems in which they can

operate on the symbols as though the symbols were the mathematical objects.
14. Duvall, 1999.
15. Kaput, 1987, argues that much of elementary school mathematics is not about numbers

but about a particular representational system for numbers.  See Cuoco, 2001, for
detailed discussions of various ways representations come into play in school
mathematics.

16. See Lakoff and Núñez, 1997, and Sfard, 1997, for detailed discussion of the metaphoric
nature of mathematics.

17. Sfard, 1997, p. 36, emphasis in original.
18. “I remember as a child, in fifth grade, coming to the amazing (to me) realization that

the answer to 134 divided by 29 is 134/29 (and so forth).  What a tremendous labor-
saving device!  To me, ‘134 divided by 29’ meant a certain tedious chore, while 134/
29 was an object with no implicit work.  I went excitedly to my father to explain my
discovery.  He told me that of course this is so, a/b and a divided by b are just synonyms.
To him it was just a small variation in notation” (Thurston, 1990, p. 847).

19. Grouping is a common approach in measurement activities.  For example, in
measuring time, there are 60 seconds in a minute, 60 minutes in an hour, 24 hours in
a day, approximately 30 days in a month, 12 months in a year, and so on.  For distance,
the customary U.S. system uses inches, feet, yards, and miles, and the metric system
uses centimeters, meters, and kilometers.

20. For example, IX means nine (that is, one less than ten), whereas XI means eleven
(one more than ten).

21. This generality was a significant accomplishment.  In the third century B.C. in Greece,
with its primitive numeration system, a subject of debate was whether there even
existed a number large enough to describe the number of grains of sand in the
universe.  The issue was serious enough that Archimedes, the greatest mathematician
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of classical times, wrote a paper in the form of a letter to the king of his city explaining
how to write such very large numbers.  Archimedes, however, did not go so far as to
invent the decimal system, with its potential for extending indefinitely.

22. Knuth, 1974, p. 323.
23. Steen, 1990.  See Morrow and Kenney, 1998, for more perspectives on algorithms.
24. The ellipsis points “. . .” in the expression are a significant piece of abstract mathematical

notation, compactly designating the omission of the terms needed (to reach m, in this
case).
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4
THE STRANDS OF

MATHEMATICAL PROFICIENCY

During the twentieth century, the meaning of successful mathematics
learning underwent several shifts in response to changes in both society and
schooling.  For roughly the first half of the century, success in learning the
mathematics of pre-kindergarten to eighth grade usually meant facility in
using the computational procedures of arithmetic, with many educators em-
phasizing the need for skilled performance and others emphasizing the need
for students to learn procedures with understanding.1   In the 1950s and 1960s,
the new math movement defined successful mathematics learning primarily
in terms of understanding the structure of mathematics together with its unify-
ing ideas, and not just as computational skill.  This emphasis was followed by
a “back to basics” movement that proposed returning to the view that suc-
cess in mathematics meant being able to compute accurately and quickly.
The reform movement of the 1980s and 1990s pushed the emphasis toward
what was called the development of “mathematical power,” which involved
reasoning, solving problems, connecting mathematical ideas, and communi-
cating mathematics to others.  Reactions to reform proposals stressed such
features of mathematics learning as the importance of memorization, of facil-
ity in computation, and of being able to prove mathematical assertions.  These
various emphases have reflected different goals for school mathematics held
by different groups of people at different times.

Our analyses of the mathematics to be learned, our reading of the research
in cognitive psychology and mathematics education, our experience as learners
and teachers of mathematics, and our judgment as to the mathematical knowl-
edge, understanding, and skill people need today have led us to adopt a
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composite, comprehensive view of successful mathematics learning.  This
view, admittedly, represents no more than a single committee’s consensus.
Yet our various backgrounds have led us to formulate, in a way that we hope
others can and will accept, the goals toward which mathematics learning should
be aimed.  In this chapter, we describe the kinds of cognitive changes that we
want to promote in children so that they can be successful in learning math-
ematics.

Recognizing that no term captures completely all aspects of expertise,
competence, knowledge, and facility in mathematics, we have chosen math-
ematical proficiency to capture what we believe is necessary for anyone to learn
mathematics successfully.  Mathematical proficiency, as we see it, has five
components, or strands:

• conceptual understanding—comprehension of mathematical concepts,
operations, and relations

• procedural fluency—skill in carrying out procedures flexibly, accurately,
efficiently, and appropriately

• strategic competence—ability to formulate, represent, and solve math-
ematical problems

• adaptive reasoning—capacity for logical thought, reflection, explana-
tion, and justification

• productive disposition—habitual inclination to see mathematics as
sensible, useful, and worthwhile, coupled with a belief in diligence and one’s
own efficacy.

These strands are not independent; they represent different aspects of a
complex whole.  Each is discussed in more detail below.  The most important
observation we make here, one stressed throughout this report, is that the
five strands are interwoven and interdependent in the development of profi-
ciency in mathematics (see Box 4-1).  Mathematical proficiency is not a one-
dimensional trait, and it cannot be achieved by focusing on just one or two of
these strands.  In later chapters, we argue that helping children acquire math-
ematical proficiency calls for instructional programs that address all its strands.
As they go from pre-kindergarten to eighth grade, all students should become
increasingly proficient in mathematics.  That proficiency should enable them
to cope with the mathematical challenges of daily life and enable them to
continue their study of mathematics in high school and beyond.

The five strands provide a framework for discussing the knowledge, skills,
abilities, and beliefs that constitute mathematical proficiency.  This frame-
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Box 4-1

Intertwined Strands of Proficiency

Conceptual 
Understanding

Strategic
Competence

Productive
Disposition

Procedural
Fluency

Adaptive
Reasoning

work has some similarities with the one used in recent mathematics assess-
ments by the National Assessment of Educational Progress (NAEP), which
features three mathematical abilities (conceptual understanding, procedural
knowledge, and problem solving) and includes additional specifications for
reasoning, connections, and communication.2   The strands also echo compo-
nents of mathematics learning that have been identified in materials for
teachers.  At the same time, research and theory in cognitive science provide
general support for the ideas contributing to these five strands.  Fundamen-
tal in that work has been the central role of mental representations.  How
learners represent and connect pieces of knowledge is a key factor in whether
they will understand it deeply and can use it in problem solving.  Cognitive
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scientists have concluded that competence in an area of inquiry depends upon
knowledge that is not merely stored but represented mentally and organized
(connected and structured) in ways that facilitate appropriate retrieval and
application.  Thus, learning with understanding is more powerful than sim-
ply memorizing because the organization improves retention, promotes flu-
ency, and facilitates learning related material.  The central notion that strands
of competence must be interwoven to be useful reflects the finding that hav-
ing a deep understanding requires that learners connect pieces of knowledge,
and that connection in turn is a key factor in whether they can use what they
know productively in solving problems.  Furthermore, cognitive science stud-
ies of problem solving have documented the importance of adaptive exper-
tise and of what is called metacognition: knowledge about one’s own thinking
and ability to monitor one’s own understanding and problem-solving activity.
These ideas contribute to what we call strategic competence and adaptive
reasoning.  Finally, learning is also influenced by motivation, a component of
productive disposition.3

Although there is not a perfect fit between the strands of mathematical
proficiency and the kinds of knowledge and processes identified by cogni-
tive scientists, mathematics educators, and others investigating learning, we
see the strands as reflecting a firm, sizable body of scholarly literature both in
and outside mathematics education.

Conceptual Understanding

Conceptual understanding refers to an integrated and functional grasp of
mathematical ideas.  Students with conceptual understanding know more
than isolated facts and methods.  They understand why a mathematical idea
is important and the kinds of contexts in which is it useful.  They have orga-
nized their knowledge into a coherent whole, which enables them to learn
new ideas by connecting those ideas to what they already know.4   Concep-
tual understanding also supports retention.  Because facts and methods learned
with understanding are connected, they are easier to remember and use, and
they can be reconstructed when forgotten.5   If students understand a method,
they are unlikely to remember it incorrectly.  They monitor what they re-
member and try to figure out whether it makes sense.  They may attempt to
explain the method to themselves and correct it if necessary.  Although teachers
often look for evidence of conceptual understanding in students’ ability to
verbalize connections among concepts and representations, conceptual un-
derstanding need not be explicit.  Students often understand before they can
verbalize that understanding.6
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A significant indicator of conceptual understanding is being able to rep-
resent mathematical situations in different ways and knowing how different
representations can be useful for different purposes.  To find one’s way around
the mathematical terrain, it is important to see how the various representa-
tions connect with each other, how they are similar, and how they are differ-
ent.  The degree of students’ conceptual understanding is related to the rich-
ness and extent of the connections they have made.

For example, suppose students are adding fractional quantities of differ-

ent sizes, say 1
3

 + 2
5

.  They might draw a picture or use concrete materials of

various kinds to show the addition.  They might also represent the number

sentence 1
3

 + 2
5

 = ? as a story.  They might turn to the number line, represent-

ing each fraction by a segment and adding the fractions by joining the seg-
ments.  By renaming the fractions so that they have the same denominator,
the students might arrive at a common measure for the fractions, determine
the sum, and see its magnitude on the number line.  By operating on these
different representations, students are likely to use different solution meth-
ods.  This variation allows students to discuss the similarities and differences
of the representations, the advantages of each, and how they must be con-
nected if they are to yield the same answer.

Connections are most useful when they link related concepts and meth-
ods in appropriate ways.  Mnemonic techniques learned by rote may provide
connections among ideas that make it easier to perform mathematical opera-
tions, but they also may not lead to understanding.7   These are not the kinds
of connections that best promote the acquisition of mathematical proficiency.

Knowledge that has been learned with understanding provides the basis
for generating new knowledge and for solving new and unfamiliar problems.8

When students have acquired conceptual understanding in an area of math-
ematics, they see the connections among concepts and procedures and can
give arguments to explain why some facts are consequences of others.  They
gain confidence, which then provides a base from which they can move to
another level of understanding.

With respect to the learning of number, when students thoroughly un-
derstand concepts and procedures such as place value and operations with
single-digit numbers, they can extend these concepts and procedures to new
areas.  For example, students who understand place value and other multidigit
number concepts are more likely than students without such understanding
to invent their own procedures for multicolumn addition and to adopt correct
procedures for multicolumn subtraction that others have presented to them.9
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Thus, learning how to add and subtract multidigit numbers does not have to
involve entirely new and unrelated ideas.  The same observation can be made
for multiplication and division.

Conceptual understanding helps students avoid many critical errors in
solving problems, particularly errors of magnitude.  For example, if they are
multiplying 9.83 and 7.65 and get 7519.95 for the answer, they can immedi-
ately decide that it cannot be right.  They know that 10 × 8 is only 80, so
multiplying two numbers less than 10 and 8 must give a product less than 80.
They might then suspect that the decimal point is incorrectly placed and
check that possibility.

Conceptual understanding frequently results in students having less to
learn because they can see the deeper similarities between superficially
unrelated situations.  Their understanding has been encapsulated into com-
pact clusters of interrelated facts and principles.  The contents of a given
cluster may be summarized by a short sentence or phrase like “properties of
multiplication,” which is sufficient for use in many situations.  If necessary,
however, the cluster can be unpacked if the student needs to explain a
principle, wants to reflect on a concept, or is learning new ideas.  Often, the
structure of students’ understanding is hierarchical, with simpler clusters of
ideas packed into larger, more complex ones.  A good example of a knowl-
edge cluster for mathematically proficient older students is the number line.
In one easily visualized picture, the student can grasp relations between all
the number systems described in chapter 3, along with geometric interpreta-
tions for the operations of arithmetic.  It connects arithmetic to geometry and
later in schooling serves as a link to more advanced mathematics.

As an example of how a knowledge cluster can make learning easier,
consider the cluster students might develop for adding whole numbers.  If
students understand that addition is commutative (e.g., 3 + 5 = 5 + 3), their
learning of basic addition combinations is reduced by almost half.  By
exploiting their knowledge of other relationships such as that between the
doubles (e.g., 5 + 5 and 6 + 6) and other sums, they can reduce still further the
number of addition combinations they need to learn.  Because young chil-
dren tend to learn the doubles fairly early, they can use them to produce
closely related sums.10   For example, they may see that 6 + 7 is just one more
than 6 + 6.  These relations make it easier for students to learn the new addi-
tion combinations because they are generating new knowledge rather than
relying on rote memorization.  Conceptual understanding, therefore, is a wise
investment that pays off for students in many ways.
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Procedural Fluency

Procedural fluency refers to knowledge of procedures, knowledge of when
and how to use them appropriately, and skill in performing them flexibly,
accurately, and efficiently.  In the domain of number, procedural fluency is
especially needed to support conceptual understanding of place value and
the meanings of rational numbers.  It also supports the analysis of similarities
and differences between methods of calculating.  These methods include, in
addition to written procedures, mental methods for finding certain sums, dif-
ferences, products, or quotients, as well as methods that use calculators, com-
puters, or manipulative materials such as blocks, counters, or beads.

Students need to be efficient and accurate in performing basic computa-
tions with whole numbers (6 + 7, 17 – 9, 8 × 4, and so on) without always
having to refer to tables or other aids.  They also need to know reasonably
efficient and accurate ways to add, subtract, multiply, and divide multidigit
numbers, both mentally and with pencil and paper.  A good conceptual under-
standing of place value in the base-10 system supports the development of
fluency in multidigit computation.11   Such understanding also supports sim-
plified but accurate mental arithmetic and more flexible ways of dealing with
numbers than many students ultimately achieve.

Connected with procedural fluency is knowledge of ways to estimate the
result of a procedure.  It is not as critical as it once was, for example, that
students develop speed or efficiency in calculating with large numbers by
hand, and there appears to be little value in drilling students to achieve such
a goal.  But many tasks involving mathematics in everyday life require facility
with algorithms for performing computations either mentally or in writing.

In addition to providing tools for computing, some algorithms are impor-
tant as concepts in their own right, which again illustrates the link between
conceptual understanding and procedural fluency.  Students need to see that
procedures can be developed that will solve entire classes of problems, not
just individual problems.  By studying algorithms as “general procedures,”
students can gain insight into the fact that mathematics is well structured
(highly organized, filled with patterns, predictable) and that a carefully devel-
oped procedure can be a powerful tool for completing routine tasks.

It is important for computational procedures to be efficient, to be used
accurately, and to result in correct answers.  Both accuracy and efficiency can
be improved with practice, which can also help students maintain fluency.
Students also need to be able to apply procedures flexibly.  Not all computa-
tional situations are alike.  For example, applying a standard pencil-and-paper
algorithm to find the result of every multiplication problem is neither neces-
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sary nor efficient.  Students should be able to use a variety of mental strate-
gies to multiply by 10, 20, or 300 (or any power of 10 or multiple of 10).  Also,
students should be able to perform such operations as finding the sum of 199
and 67 or the product of 4 and 26 by using quick mental strategies rather than
relying on paper and pencil.  Further, situations vary in their need for exact
answers.  Sometimes an estimate is good enough, as in calculating a tip on a
bill at a restaurant.  Sometimes using a calculator or computer is more appro-
priate than using paper and pencil, as in completing a complicated tax form.
Hence, students need facility with a variety of computational tools, and they
need to know how to select the appropriate tool for a given situation.

Procedural fluency and conceptual understanding are often seen as com-
peting for attention in school mathematics.  But pitting skill against under-
standing creates a false dichotomy.12   As we noted earlier, the two are inter-
woven.  Understanding makes learning skills easier, less susceptible to
common errors, and less prone to forgetting.  By the same token, a certain
level of skill is required to learn many mathematical concepts with under-
standing, and using procedures can help strengthen and develop that under-
standing.  For example, it is difficult for students to understand multidigit
calculations if they have not attained some reasonable level of skill in single-
digit calculations.  On the other hand, once students have learned procedures
without understanding, it can be difficult to get them to engage in activities
to help them understand the reasons underlying the procedure.13   In an experi-
mental study, fifth-grade students who first received instruction on proce-
dures for calculating area and perimeter followed by instruction on under-
standing those procedures did not perform as well as students who received
instruction focused only on understanding.14

Without sufficient procedural fluency, students have trouble deepening
their understanding of mathematical ideas or solving mathematics problems.
The attention they devote to working out results they should recall or com-
pute easily prevents them from seeing important relationships.  Students need
well-timed practice of the skills they are learning so that they are not handi-
capped in developing the other strands of proficiency.

When students practice procedures they do not understand, there is a
danger they will practice incorrect procedures, thereby making it more diffi-
cult to learn correct ones.  For example, on one standardized test, the grade 2
national norms for two-digit subtraction problems requiring borrowing, such
as 62 – 48 = ?, are 38% correct.  Many children subtract the smaller from the
larger digit in each column to get 26 as the difference between 62 and 48 (see
Box 4-2).  If students learn to subtract with understanding, they rarely make
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this error.15   Further, when students learn a procedure without understand-
ing, they need extensive practice so as not to forget the steps.  If students do
understand, they are less likely to forget critical steps and are more likely to
be able to reconstruct them when they do.  Shifting the emphasis to learning
with understanding, therefore, can in the long run lead to higher levels of
skill than can be attained by practice alone.

If students have been using incorrect procedures for several years, then
instruction emphasizing understanding may be less effective.16   When children
learn a new, correct procedure, they do not always drop the old one.  Rather,
they use either the old procedure or the new one depending on the situation.
Only with time and practice do they stop using incorrect or inefficient
methods.17   Hence initial learning with understanding can make learning more
efficient.

When skills are learned without understanding, they are learned as iso-
lated bits of knowledge.18   Learning new topics then becomes harder since
there is no network of previously learned concepts and skills to link a new
topic to.  This practice leads to a compartmentalization of procedures that
can become quite extreme, so that students believe that even slightly differ-
ent problems require different procedures.  That belief can arise among chil-
dren in the early grades when, for example, they learn one procedure for
subtraction problems without regrouping and another for subtraction prob-
lems with regrouping.  Another consequence when children learn without
understanding is that they separate what happens in school from what happens
outside.19   They have one set of procedures for solving problems outside of
school and another they learned and use in school—without seeing the rela-
tion between the two.  This separation limits children’s ability to apply what
they learn in school to solve real problems.

Also, students who learn procedures without understanding can typically
do no more than apply the learned procedures, whereas students who learn

Box 4-2

A common error in multidigit subtraction

62
48
26

−  
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with understanding can modify or adapt procedures to make them easier to
use.  For example, students with limited understanding of addition would
ordinarily need paper and pencil to add 598 and 647.  Students with more
understanding would recognize that 598 is only 2 less than 600, so they might
add 600 and 647 and then subtract 2 from that sum.20

Strategic Competence

Strategic competence refers to the ability to formulate mathematical prob-
lems, represent them, and solve them.  This strand is similar to what has
been called problem solving and problem formulation in the literature of
mathematics education and cognitive science, and mathematical problem
solving, in particular, has been studied extensively.21

Although in school, students are often presented with clearly specified
problems to solve, outside of school they encounter situations in which part
of the difficulty is to figure out exactly what the problem is.  Then they need
to formulate the problem so that they can use mathematics to solve it.  Con-
sequently, they are likely to need experience and practice in problem formu-
lating as well as in problem solving.  They should know a variety of solution
strategies as well as which strategies might be useful for solving a specific
problem.  For example, sixth graders might be asked to pose a problem on
the topic of the school cafeteria.22   Some might ask whether the lunches are
too expensive or what the most and least favorite lunches are.  Others might
ask how many trays are used or how many cartons of milk are sold.  Still
others might ask how the layout of the cafeteria might be improved.

With a formulated problem in hand, the student’s first step in solving it is
to represent it mathematically in some fashion, whether numerically, sym-
bolically, verbally, or graphically.  Fifth graders solving problems about getting
from home to school might describe verbally the route they take or draw a
scale map of the neighborhood.  Representing a problem situation requires,
first, that the student build a mental image of its essential components.  Becom-
ing strategically competent involves an avoidance of “number grabbing”
methods (in which the student selects numbers and prepares to perform arith-
metic operations on them)23  in favor of methods that generate problem models
(in which the student constructs a mental model of the variables and rela-
tions described in the problem).  To represent a problem accurately, students
must first understand the situation, including its key features.  They then
need to generate a mathematical representation of the problem that captures
the core mathematical elements and ignores the irrelevant features.  This
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step may be facilitated by making a drawing, writing an equation, or creating
some other tangible representation. Consider the following two-step problem:

At ARCO, gas sells for $1.13 per gallon.
This is 5 cents less per gallon than gas at Chevron.
How much does 5 gallons of gas cost at Chevron?

In a common superficial method for representing this problem, students fo-
cus on the numbers in the problem and use so-called keywords to cue appro-
priate arithmetic operations.24   For example, the quantities $1.83 and 5 cents
are followed by the keyword less, suggesting that the student should subtract
5 cents from $1.13 to get $1.08.  Then the keywords how much and 5 gallons
suggest that 5 should be multiplied by the result, yielding $5.40.

In contrast, a more proficient approach is to construct a problem model—
that is, a mental model of the situation described in the problem.  A problem
model is not a visual picture per se; rather, it is any form of mental represen-
tation that maintains the structural relations among the variables in the
problem.  One way to understand the first two sentences, for example, might
be for a student to envision a number line and locate each cost per gallon on
it to solve the problem.

In building a problem model, students need to be alert to the quantities
in the problem.  It is particularly important that students represent the quan-
tities mentally, distinguishing what is known from what is to be found.  Analy-
ses of students’ eye fixations reveal that successful solvers of the two-step
problem above are likely to focus on terms such as ARCO, Chevron, and this,
the principal known and unknown quantities in the problem.  Less success-
ful problem solvers tend to focus on specific numbers and keywords such as
$1.13, 5 cents, less, and 5 gallons rather than the relationships among the
quantities.25

Not only do students need to be able to build representations of indi-
vidual situations, but they also need to see that some representations share
common mathematical structures.  Novice problem solvers are inclined to
notice similarities in surface features of problems, such as the characters or
scenarios described in the problem.  More expert problem solvers focus more
on the structural relationships within problems, relationships that provide
the clues for how problems might be solved.26   For example, one problem
might ask students to determine how many different stacks of five blocks can
be made using red and green blocks, and another might ask how many differ-
ent ways hamburgers can be ordered with or without each of the following:
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catsup, onions, pickles, lettuce, and tomato.  Novices would see these prob-
lems as unrelated; experts would see both as involving five choices between
two things: red and green, or with and without.27

In becoming proficient problem solvers, students learn how to form mental
representations of problems, detect mathematical relationships, and devise
novel solution methods when needed.  A fundamental characteristic needed
throughout the problem-solving process is flexibility.  Flexibility develops
through the broadening of knowledge required for solving nonroutine prob-
lems rather than just routine problems.

Routine problems are problems that the learner knows how to solve based
on past experience.28   When confronted with a routine problem, the learner
knows a correct solution method and is able to apply it.  Routine problems
require reproductive thinking; the learner needs only to reproduce and apply
a known solution procedure.  For example, finding the product of 567 and 46
is a routine problem for most adults because they know what to do and how
to do it.

In contrast, nonroutine problems are problems for which the learner does
not immediately know a usable solution method.  Nonroutine problems
require productive thinking because the learner needs to invent a way to
understand and solve the problem.  For example, for most adults a nonroutine
problem of the sort often found in newspaper or magazine puzzle columns is
the following:

A cycle shop has a total of 36 bicycles and tricycles in stock.
Collectively there are 80 wheels.
How many bikes and how many tricycles are there?

One solution approach is to reason that all 36 have at least two wheels for a
total of 36 × 2 = 72 wheels.  Since there are 80 wheels in all, the eight addi-
tional wheels (80 – 72) must belong to 8 tricycles.  So there are 36 – 8 = 28
bikes.

A less sophisticated approach would be to “guess and check”: If there
were 20 bikes and 16 tricycles, that would give (20 × 2) + (16 × 3) = 88 wheels,
which is too many.  Reducing the number of tricycles, a guess of 24 bikes and
12 tricycles gives (24 × 2) + (12 × 3) = 84 wheels—still too many.  Another
reduction of the number of tricycles by 4 gives 28 bikes, 8 tricycles, and the
80 wheels needed.

A more sophisticated, algebraic approach would be to let b be the num-
ber of bikes and t the number of tricycles.  Then b + t = 36 and 2b + 3t = 80.
The solution to this system of equations also yields 28 bikes and 8 tricycles.
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A student with strategic competence could not only come up with sev-
eral approaches to a nonroutine problem such as this one but could also choose
flexibly among reasoning, guess-and-check, algebraic, or other methods to
suit the demands presented by the problem and the situation in which it was
posed.

Flexibility of approach is the major cognitive requirement for solving
nonroutine problems.  It can be seen when a method is created or adjusted to
fit the requirements of a novel situation, such as being able to use general
principles about proportions to determine the best buy.  For example, when
the choice is between a 4-ounce can of peanuts for 45 cents and a 10-ounce
can for 90 cents, most people use a ratio strategy: the larger can costs twice as
much as the smaller can but contains more than twice as many ounces, so it is
a better buy.  When the choice is between a 14-ounce jar of sauce for 79 cents
and an 18-ounce jar for 81 cents, most people use a difference strategy: the
larger jar costs just 2 cents more but gets you 4 more ounces, so it is the better
buy.  When the choice is between a 3-ounce bag of sunflower seeds for 30
cents and a 4-ounce bag for 44 cents, the most common strategy is unit-cost:
The smaller bag costs 10 cents per ounce, whereas the larger costs 11 cents
per ounce, so the smaller one is the better buy.

There are mutually supportive relations between strategic competence
and both conceptual understanding and procedural fluency, as the various
approaches to the cycle shop problem illustrate.  The development of strate-
gies for solving nonroutine problems depends on understanding the quanti-
ties involved in the problems and their relationships as well as on fluency in
solving routine problems.  Similarly, developing competence in solving
nonroutine problems provides a context and motivation for learning to solve
routine problems and for understanding concepts such as given, unknown, con-
dition, and solution.

Strategic competence comes into play at every step in developing proce-
dural fluency in computation.  As students learn how to carry out an opera-
tion such as two-digit subtraction (for example, 86 – 59), they typically progress
from conceptually transparent and effortful procedures to compact and more
efficient ones (as discussed in detail in chapter 6).  For example, an initial
procedure for 86 – 59 might be to use bundles of sticks (see Box 4-3).  A
compact procedure involves applying a written numerical algorithm that carries
out the same steps without the bundles of sticks.  Part of developing strategic
competence involves learning to replace by more concise and efficient proce-
dures those cumbersome procedures that might at first have been helpful in
understanding the operation.
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Box 4-3

Subtraction Using Sticks: Modeling 86 – 59 = ?

Begin with 8 bundles of 10 sticks along with 6 individual sticks.  Because you
cannot take away 9 individual sticks, open one bundle, creating 7 bundles of 10
sticks and 16 individual sticks.  Take away 5 of the bundles (corresponding to
subtracting 50), and take away 9 individual sticks (corresponding to subtracting
9).  The number of remaining sticks—2 bundles and 7 individual sticks, or 27—is
the answer.

86 = 80 + 6

86 = (70 + 16)

– (50 + 9)

Remove 9Remove 50

20 + 7

 27 remain  

Break apart a bundle
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Students develop procedural fluency as they use their strategic compe-
tence to choose among effective procedures.  They also learn that solving
challenging mathematics problems depends on the ability to carry out proce-
dures readily and, conversely, that problem-solving experience helps them
acquire new concepts and skills.  Interestingly, very young children use a
variety of strategies to solve problems and will tend to select strategies that
are well suited to particular problems.29   They thereby show the rudiments of
adaptive reasoning, the next strand to be discussed.

Adaptive Reasoning

Adaptive reasoning refers to the capacity to think logically about the rela-
tionships among concepts and situations.  Such reasoning is correct and valid,
stems from careful consideration of alternatives, and includes knowledge of
how to justify the conclusions.  In mathematics, adaptive reasoning is the
glue that holds everything together, the lodestar that guides learning.  One
uses it to navigate through the many facts, procedures, concepts, and solution
methods and to see that they all fit together in some way, that they make
sense.  In mathematics, deductive reasoning is used to settle disputes and
disagreements.  Answers are right because they follow from some agreed-
upon assumptions through series of logical steps.  Students who disagree about
a mathematical answer need not rely on checking with the teacher, collecting
opinions from their classmates, or gathering data from outside the classroom.
In principle, they need only check that their reasoning is valid.

Many conceptions of mathematical reasoning have been confined to for-
mal proof and other forms of deductive reasoning.  Our notion of adaptive
reasoning is much broader, including not only informal explanation and justi-
fication but also intuitive and inductive reasoning based on pattern, analogy,
and metaphor.  As one researcher put it, “The human ability to find analogical
correspondences is a powerful reasoning mechanism.”30   Analogical reason-
ing, metaphors, and mental and physical representations are “tools to think
with,” often serving as sources of hypotheses, sources of problem-solving
operations and techniques, and aids to learning and transfer.31

Some researchers have concluded that children’s reasoning ability is quite
limited until they are about 12 years old.32   Yet when asked to talk about how
they arrived at their solutions to problems, children as young as 4 and 5 dis-
play evidence of encoding and inference and are resistant to counter sugges-
tion.33   With the help of representation-building experiences, children can
demonstrate sophisticated reasoning abilities.  After working in pairs and
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reflecting on their activity, for example, kindergartners can “prove” theorems
about sums of even and odd numbers.34   Through a carefully constructed
sequence of activities about adding and removing marbles from a bag con-
taining many marbles,35  second graders can reason that 5 + (-6) = -1.  In the
context of cutting short bows from a 12-meter package of ribbon and using
physical models to calculate that 12 divided by 1

3
 is 36, fifth graders can rea-

son that 12 divided by 2
3

 cannot be 72 because that would mean getting more
bows from a package when the individual bow is larger, which does not make
sense.36   Research suggests that students are able to display reasoning ability
when three conditions are met: They have a sufficient knowledge base, the
task is understandable and motivating, and the context is familiar and com-
fortable.37

One manifestation of adaptive reasoning is the ability to justify one’s work.
We use justify in the sense of “provide sufficient reason for.”  Proof is a form
of justification, but not all justifications are proofs.  Proofs (both formal and
informal) must be logically complete, but a justification may be more tele-
graphic, merely suggesting the source of the reasoning.  Justification and proof
are a hallmark of formal mathematics, often seen as the province of older
students.  However, as pointed out above, students can start learning to jus-
tify their mathematical ideas in the earliest grades in elementary school.38

Kindergarten and first-grade students can be given regular opportunities to
talk about the concepts and procedures they are using and to provide good
reasons for what they are doing.  Classroom norms can be established in which
students are expected to justify their mathematical claims and make them
clear to others.  Students need to be able to justify and explain ideas in order
to make their reasoning clear, hone their reasoning skills, and improve their
conceptual understanding.39

It is not sufficient to justify a procedure just once.  As we discuss below,
the development of proficiency occurs over an extended period of time.  Stu-
dents need to use new concepts and procedures for some time and to explain
and justify them by relating them to concepts and procedures that they already
understand.  For example, it is not sufficient for students to do only practice
problems on adding fractions after the procedure has been developed.  If
students are to understand the algorithm, they also need experience in explain-
ing and justifying it themselves with many different problems.

Adaptive reasoning interacts with the other strands of proficiency, par-
ticularly during problem solving.  Learners draw on their strategic compe-
tence to formulate and represent a problem, using heuristic approaches that
may provide a solution strategy, but adaptive reasoning must take over when
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they are determining the legitimacy of a proposed strategy.  Conceptual under-
standing provides metaphors and representations that can serve as a source of
adaptive reasoning, which, taking into account the limitations of the repre-
sentations, learners use to determine whether a solution is justifiable and
then to justify it.  Often a solution strategy will require fluent use of proce-
dures for calculation, measurement, or display, but adaptive reasoning should
be used to determine whether the procedure is appropriate.  And while carry-
ing out a solution plan, learners use their strategic competence to monitor
their progress toward a solution and to generate alternative plans if the cur-
rent plan seems ineffective.  This approach both depends upon productive
disposition and supports it.

Productive Disposition

Productive disposition refers to the tendency to see sense in mathematics,
to perceive it as both useful and worthwhile, to believe that steady effort in
learning mathematics pays off, and to see oneself as an effective learner and
doer of mathematics.40   If students are to develop conceptual understanding,
procedural fluency, strategic competence, and adaptive reasoning abilities,
they must believe that mathematics is understandable, not arbitrary; that,
with diligent effort, it can be learned and used; and that they are capable of
figuring it out.  Developing a productive disposition requires frequent oppor-
tunities to make sense of mathematics, to recognize the benefits of persever-
ance, and to experience the rewards of sense making in mathematics.

A productive disposition develops when the other strands do and helps
each of them develop.  For example, as students build strategic competence
in solving nonroutine problems, their attitudes and beliefs about themselves
as mathematics learners become more positive.  The more mathematical con-
cepts they understand, the more sensible mathematics becomes.  In contrast,
when students are seldom given challenging mathematical problems to solve,
they come to expect that memorizing rather than sense making paves the
road to learning mathematics,41  and they begin to lose confidence in them-
selves as learners.  Similarly, when students see themselves as capable of
learning mathematics and using it to solve problems, they become able to
develop further their procedural fluency or their adaptive reasoning abilities.
Students’ disposition toward mathematics is a major factor in determining
their educational success.  Students who view their mathematical ability as
fixed and test questions as measuring their ability rather than providing oppor-
tunities to learn are likely to avoid challenging problems and be easily dis-
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couraged by failure.42   Students who view ability as expandable in response
to experience and training are more likely to seek out challenging situations
and learn from them.  Cross-cultural research studies have found that U.S.
children are more likely to attribute success in school to ability rather than
effort when compared with students in East Asian countries.43

Most U.S. children enter school eager to learn and with positive attitudes
toward mathematics.  It is critical that they encounter good mathematics teach-
ing in the early grades.  Otherwise, those positive attitudes may turn sour as
they come to see themselves as poor learners and mathematics as nonsensical,
arbitrary, and impossible to learn except by rote memorization.44   Such views,
once adopted, can be extremely difficult to change.45

The teacher of mathematics plays a critical role in encouraging students
to maintain positive attitudes toward mathematics.  How a teacher views math-
ematics and its learning affects that teacher’s teaching practice,46  which ulti-
mately affects not only what the students learn but how they view them-
selves as mathematics learners.  Teachers and students inevitably negotiate
among themselves the norms of conduct in the class, and when those norms
allow students to be comfortable in doing mathematics and sharing their ideas
with others, they see themselves as capable of understanding.47   In chapter 9
we discuss some of the ways in which teachers’ expectations and the teach-
ing strategies they use can help students maintain a positive attitude toward
mathematics, and in chapter 10 we discuss some programs of teacher devel-
opment that may help teachers in that endeavor.

An earlier report from the National Research Council identified the cause
of much poor performance in school mathematics in the United States:

The unrestricted power of peer pressure often makes good perfor-
mance in mathematics socially unacceptable.  This environment of
negative expectation is strongest among minorities and women—
those most at risk—during the high school years when students first
exercise choice in curricular goals.48

Some of the most important consequences of students’ failure to develop a
productive disposition toward mathematics occur in high school, when they
have the opportunity to avoid challenging mathematics courses.  Avoiding
such courses may eliminate the need to face up to peer pressure and other
sources of discouragement, but it does so at the expense of precluding ca-
reers in science, technology, medicine, and other fields that require a high
level of mathematical proficiency.
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Research with older students and adults suggests that a phenomenon
termed stereotype threat might account for much of the observed differences in
mathematics performance between ethnic groups and between male and
female students.49   In this phenomenon, good students who care about their
performance in mathematics and who belong to groups stereotyped as being
poor at mathematics perform poorly on difficult mathematics problems under
conditions in which they feel pressure to conform to the stereotype.  So-called
wise educational environments50  can reduce the harmful effects of stereo-
type threat.  These environments emphasize optimistic teacher-student rela-
tionships, give challenging work to all students, and stress the expandability
of ability, among other factors.

Students who have developed a productive disposition are confident in
their knowledge and ability.  They see that mathematics is both reasonable
and intelligible and believe that, with appropriate effort and experience, they
can learn.  It is counterproductive for students to believe that there is some
mysterious “math gene” that determines their success in mathematics.

Hence, our view of mathematical proficiency goes beyond being able to
understand, compute, solve, and reason.  It includes a disposition toward math-
ematics that is personal.  Mathematically proficient people believe that math-
ematics should make sense, that they can figure it out, that they can solve
mathematical problems by working hard on them, and that becoming math-
ematically proficient is worth the effort.

Properties of Mathematical Proficiency

Now that we have looked at each strand separately, let us consider math-
ematical proficiency as a whole.  As we indicated earlier and as the preceding
discussion illustrates, the five strands are interconnected and must work to-
gether if students are to learn successfully.  Learning is not an all-or-none
phenomenon, and as it proceeds, each strand of mathematical proficiency
should be developed in synchrony with the others.  That development takes
time.  One of the most challenging tasks faced by teachers in pre-kindergar-
ten to grade 8 is to see that children are making progress along every strand
and not just one or two.

The Strands of Proficiency Are Interwoven

How the strands of mathematical proficiency interweave and support one
another can be seen in the case of conceptual understanding and procedural
fluency.  Current research indicates that these two strands of proficiency con-
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tinually interact.51   As a child gains conceptual understanding, computational
procedures are remembered better and used more flexibly to solve new prob-
lems.  In turn, as a procedure becomes more automatic, the child is enabled
to think about other aspects of a problem and to tackle new kinds of prob-
lems, which leads to new understanding.  When using a procedure, a child
may reflect on why the procedure works, which may in turn strengthen exist-
ing conceptual understanding.52   Indeed, it is not always necessary, useful, or
even possible to distinguish concepts from procedures because understand-
ing and doing are interconnected in such complex ways.

Consider, for instance, the multiplication of multidigit whole numbers.
Many algorithms for computing 47 × 268 use one basic meaning of multipli-
cation as 47 groups of 268, together with place-value knowledge of 47 as 40 + 7,
to break the problem into two simpler ones: 40 × 268 and 7 × 268.  For example,
a common algorithm for computing 47 × 268 is written the following way,
with the two so-called partial products, 10720 and 1876, coming from the two
simpler problems:

268
×  47
1876

1072
12596

Familiarity with this algorithm may make it hard for adults to see how much
knowledge is needed for it.  It requires knowing that 40 × 268 is 4 × 10 × 268;
knowing that in the product of 268 and 10, each digit of 268 is one place to
the left; having enough fluency with basic multiplication combinations to
find 7 × 8, 7 × 60, 7 × 200, and 4 × 8, 4 × 60, 4 × 200; and having enough
fluency with multidigit addition to add the partial products.  As students learn
to execute a multidigit multiplication procedure such as this one, they should
develop a deeper understanding of multiplication and its properties.  On the
other hand, as they deepen their conceptual understanding, they should
become more fluent in computation.  A beginner who happens to forget the
algorithm but who understands the role of the distributive law can recon-
struct the process by writing 268 × 47 = 268 × (40 + 7) = (268 × 40) + (268 × 7)
and working from there.  A beginner who has simply memorized the algo-
rithm without understanding much about how it works can be lost later when
memory fails.

Copyright © National Academy of Sciences. All rights reserved.



1354 THE STRANDS OF MATHEMATICAL PROFICIENCY

Proficiency Is Not All or Nothing

Mathematical proficiency cannot be characterized as simply present or
absent.  Every important mathematical idea can be understood at many levels
and in many ways.  For example, even seemingly simple concepts such as
even and odd require an integration of several ways of thinking: choosing
alternate points on the number line, grouping items by twos, grouping items
into two groups, and looking at only the last digit of the number.  When chil-
dren are first learning about even and odd, they may know one or two of
these interpretations.53   But at an older age, a deep understanding of even
and odd means all four interpretations are connected and can be justified one
based on the others.

The research cited in chapter 5 shows that schoolchildren are never com-
plete mathematical novices.  They bring important mathematical concepts
and skills with them to school as well as misconceptions that must be taken
into account in planning instruction.  Obviously, a first grader’s understand-
ing of addition is not the same as that of a mathematician or even a lay adult.
It is still reasonable, however, to talk about a first grader as being proficient
with single-digit addition, as long as the student’s thinking in that realm in-
corporates all five strands of proficiency.  Students should not be thought of
as having proficiency when one or more strands are undeveloped.

Proficiency Develops Over Time

Proficiency in mathematics is acquired over time.  Each year they are in
school, students ought to become increasingly proficient.  For example, third
graders should be more proficient with the addition of whole numbers than
they were in the first grade.

Acquiring proficiency takes time in another sense.  Students need enough
time to engage in activities around a specific mathematical topic if they are to
become proficient with it.  When they are provided with only one or two
examples to illustrate why a procedure works or what a concept means and
then move on to practice in carrying out the procedure or identifying the
concept, they may easily fail to learn.  To become proficient, they need to
spend sustained periods of time doing mathematics—solving problems,
reasoning, developing understanding, practicing skills—and building connec-
tions between their previous knowledge and new knowledge.
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How Mathematically Proficient Are U.S.
Students Today?

One question that warrants an immediate answer is whether students in
U.S. elementary and middle schools today are becoming mathematically pro-
ficient.  The answer is important because it influences what might be recom-
mended for the future.  If students are failing to develop proficiency, the
question of how to improve school mathematics takes on a different cast than
if students are already developing high levels of proficiency.

The best source of information about student performance in the United
States is, as we noted in chapter 2, the National Assessment of Educational
Progress (NAEP), a regular assessment of students’ knowledge and skills in
the school subjects.  NAEP includes a large and representative sample of
U.S. students at about ages 9, 13, and 17, so the results provide a good picture
of students’ mathematical performance.  We sketched some of that perfor-
mance in chapter 2, but now we look at it through the frame of mathematical
proficiency.

Although the items in the NAEP assessments were not constructed to
measure directly the five strands of mathematical proficiency, they provide
some useful information about these strands.  As in chapter 2, the data re-
ported here are from the 1996 main NAEP assessment except when we refer
explicitly to the long-term trend assessment.  In general, the performance of
13-year-olds over the past 25 years tells the following story: Given traditional
curricula and methods of instruction, students develop proficiency among
the five strands in a very uneven way.  They are most proficient in aspects of
procedural fluency and less proficient in conceptual understanding, strategic
competence, adaptive reasoning, and productive disposition.  Many students
show few connections among these strands.  Examples from each strand il-
lustrate the current situation.54

Conceptual Understanding

Students’ conceptual understanding of number can be assessed in part
by asking them about properties of the number systems.  Although about
90% of U.S. 13-year-olds could add and subtract multidigit numbers, only
60% of them could construct a number given its digits and their place values
(e.g., in the number 57, the digit 5 should represent five tens).55   That is a
common finding: More students can calculate successfully with numbers than
can work with the properties of the same numbers.
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The same is true for rational numbers.  Only 35% of 13-year-olds cor-
rectly ordered three fractions, all in reduced form,56  and only 35%, asked for
a number between .03 and .04, chose the correct response.57   These findings
suggest that students may be calculating with numbers that they do not re-
ally understand.

Procedural Fluency

An overall picture of procedural fluency is provided by the NAEP long-
term trend mathematics assessment,58  which indicates that U.S. students’
performance has remained quite steady over the past 25 years (see Box 4-4).
A closer look reveals that the picture of procedural fluency is one of high
levels of proficiency in the easiest contexts.  Questions in which students are
asked to add or subtract two- and three-digit whole numbers presented nu-
merically in the standard format are answered correctly by about 90% of 13-
year-olds, with almost as good performance among 9-year-olds.59   Performance
is slightly lower among 13-year-olds for division.60

Box 4-4

NAEP Scale Scores, Long-Term Trend Assessment,
1973-1999

SOURCE:  Campbell, Hombo, and Mazzeo, 2000, p. 9.  These scale scores include
all content areas: number, geometry, algebra, and so on.

200

250

300

350

Age 17 304 300 298 302 305 307 306 307 308

Age 13 266 264 269 269 270 273 274 274 276

Age 9 219 219 219 222 230 230 231 231 232

1973 1978 1982 1986 1990 1992 1994 1996 1999

Copyright © National Academy of Sciences. All rights reserved.



138 ADDING IT UP

Students are less fluent in operating with rational numbers, both com-
mon and decimal fractions.  The most recent NAEP in 1996 contained few
computation items, but earlier assessments showed that about 50% of 13-
year-olds correctly completed problems like 3 1

2  – 3 1
3

, 4 × 2 1
2 , and 4.3 – 0.53.

Again, this level of performance has remained quite steady since the advent
of NAEP.  One conclusion that can be drawn is that by age 13 many students
have not fully developed procedural fluency.  Although most can compute
well with whole numbers in simple contexts, many still have difficulties com-
puting with rational numbers.

Strategic Competence

Results from NAEP dating back over 25 years have continually docu-
mented the fact that one of the greatest deficits in U.S. students’ learning of
mathematics is in their ability to solve problems.  In the 1996 NAEP, students
in the fourth, eighth, and twelfth grades did well on questions about basic
whole number operations and concepts in numerical and simple applied con-
texts.  However, students, especially those in the fourth and eighth grades,
had difficulty with more complex problem-solving situations.  For example,
asked to add or subtract two- and three-digit numbers, 73% of fourth graders
and 86% of eighth graders gave correct answers.  But on a multistep addition
and subtraction word problem involving similar numbers, only 33% of fourth
graders gave a correct answer (although 76% of eighth graders did).  On the
23 problem-solving tasks given as part of the 1996 NAEP in which students
had to construct an extended response, the incidence of satisfactory or better
responses was less than 10% on about half of the tasks.  The incidence of
satisfactory responses was greater than 25% on only two tasks.61

Performance on word problems declines dramatically when additional
features are included, such as more than one step or extraneous information.
Small changes in problem wording, context, or presentation can yield dramatic
changes in students’ success,62  perhaps indicating how fragile students’ prob-
lem-solving abilities typically are.

Adaptive Reasoning

Several kinds of items measure students’ proficiency in adaptive reason-
ing, though often in conjunction with other strands.  One kind of item asks
students to reason about numbers and their properties and also assesses their
conceptual understanding.  For example,
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If 49 + 83 = 132 is true, which of the following is true?

49 = 83 + 132
49 + 132 = 83
132 – 49 = 83
83 – 132 = 49

Only 61% of 13-year-olds chose the right answer, which again is considerably
lower than the percentage of students who can actually compute the result.

Another example is a multiple-choice problem in which students were
asked to estimate 12

13
 + 7

8
.  The choices were 1, 2, 19, and 21.  Fifty-five

percent of the 13-year-olds chose either 19 or 21 as the correct response.63

Even modest levels of reasoning should have prevented these errors.  Simply
observing that 12

13
 and 7

8
 are numbers less than one and that the sum of two

numbers less than one is less than two would have made it apparent that 19
and 21 were unreasonable answers.  This level of performance is especially
striking because this kind of reasoning does not require procedural fluency
plus additional proficiency.  In many ways it is less demanding than the com-
putational task and requires only that basic understanding and reasoning be
connected.  It is clear that for many students that connection is not being
made.

A second kind of item that measures adaptive reasoning is one that asks
students to justify and explain their solutions.  One such item (Box 4-5) re-
quired that students use subtraction and division to justify claims about the
population growth in two towns.  Only 1% of eighth graders in 1996 provided
a satisfactory response for both claims, and only another 21% provided a par-
tially correct response.  The results were only slightly better at grade 12.  In
this item, Darlene’s claim is stated somewhat cryptically, and students may
not have understood that they needed to think about population growth not
additively—as in the case of Brian’s claim—but multiplicatively so as to con-
clude that Town A actually had the larger rate of growth.  But given the low
levels of performance on the item, we conclude that Darlene’s enigmatic claim
was not the only source of difficulty.  Students apparently have trouble justi-
fying their answers even in relatively simple cases.

Productive Disposition

Research related to productive disposition has not examined many aspects
of the strand as we have defined it.  Such research has focused on attitudes
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In 1980 the populations of Town A and Town B were 5,000 and 6,000, respectively.
The 1990 populations of Town A and Town B were 8,000 and 9,000, respectively.

Brian claims that from 1980 to 1990 the populations of the two towns grew by
the same amount.  Use mathematics to explain how Brian might have justified
his claim.

Darlene claims that from 1980 to 1990 the population of Town A grew more.  Use
mathematics to explain how Darlene might have justified her claim.

NAEP Results Grade 8 Grade 12

Correct response for both claims 1% 3%
Partial response 21% 24%
Incorrect response 60% 56%
Omitted 16% 16%

SOURCE: 1996 NAEP assessment.  Cited in Wearne and Kouba, 2000, p. 186.
Used by permission of National Council of Teachers of Mathematics.

Box 4-5

Population Growth in Two Towns

toward mathematics, beliefs about one’s own ability, and beliefs about the
nature of mathematics.  In general, U.S. boys have more positive attitudes
toward mathematics than U.S. girls do, even though differences in achieve-
ment between boys and girls are, in general, not as pronounced today as they
were some decades ago.64   Girls’ attitudes toward mathematics also decline
more sharply through the grades than those of boys.65   Differences in math-
ematics achievement remain larger across groups that differ in such factors as
race, ethnicity, and social class, but differences in attitudes toward mathematics
across these groups are not clearly associated with achievement differences.66

The complex relationship between attitudes and achievement is well il-
lustrated in recent international studies.  Although within most countries,
positive attitudes toward mathematics are associated with high achievement,
eighth graders in some East Asian countries, whose average achievement in
mathematics is among the highest in the world, have tended to have, on
average, among the most negative attitudes toward mathematics.  U.S. eighth
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graders, whose achievement is around the international average, have tended
to be about average in their attitudes.67   Similarly, within a country, students
who perceive themselves as good at mathematics tend to have high levels of
achievement, but that relationship does not hold across countries.  In Asian
countries, perhaps because of cultural traditions encouraging humility or
because of the challenging curriculum they face, eighth graders tend to per-
ceive themselves as not very good at mathematics.  In the United States, in
contrast, eighth graders tend to believe that mathematics is not especially
difficult for them and that they are good at it.68

Data from the NAEP student questionnaire show that many U.S. stu-
dents develop a variety of counterproductive beliefs about mathematics and
about themselves as learners of mathematics.  For example, 54% of the fourth
graders and 40% of the eighth graders in the 1996 NAEP assessment thought
that mathematics is mostly a set of rules and that learning mathematics means
memorizing the rules.  On the other hand, approximately 75% of the fourth
graders and 75% of the eighth graders sampled reported that they understand
most of what goes on in mathematics class.  The data do not indicate, how-
ever, whether the students thought they could make sense out of the math-
ematics themselves or depended on others for explanations.

Despite the finding that many students associate mathematics with memo-
rization, students at all grade levels appear to view mathematics as useful.
The 1996 NAEP revealed that 69% of the fourth graders and 70% of the
eighth graders agreed that mathematics is useful for solving everyday prob-
lems.  Although students appear to think mathematics is useful for everyday
problems or important to society in general, it is not clear that they think it is
important for them as individuals to know a lot of mathematics.69

Proficiency in Other Domains of Mathematics

Although our discussion of mathematical proficiency in this report is
focused on the domain of number, the five strands apply equally well to other
domains of mathematics such as geometry, measurement, probability, and
statistics.  Regardless of the domain of mathematics, conceptual understand-
ing refers to an integrated and functional grasp of the mathematical ideas.
These may be ideas about shape and space, measure, pattern, function,
uncertainty, or change.  When applied to other domains of mathematics, pro-
cedural fluency refers to skill in performing flexibly, accurately, and efficiently
such procedures as constructing shapes, measuring space, computing prob-
abilities, and describing data.  It also refers to knowing when and how to use

The five
strands
apply
equally well
to other
domains of
mathematics
such as
geometry,
measurement,
probability,
and
statistics.
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those procedures.  Strategic competence refers to the ability to formulate
mathematical problems, represent them, and solve them whether the prob-
lems arise in the context of number, algebra, geometry, measurement, prob-
ability, or statistics.  Similarly, the capacity to think logically about the rela-
tionships among concepts and situations and to reason adaptively applies to
every domain of mathematics, not just number, as does the notion of a pro-
ductive disposition.  The tendency to see sense in mathematics, to perceive
it as both useful and worthwhile, to believe that steady effort in learning
mathematics pays off, and to see oneself as an effective learner and doer of
mathematics applies equally to all domains of mathematics.  We believe that
proficiency in any domain of mathematics means the development of the
five strands, that the strands of proficiency are interwoven, and that they
develop over time.  Further, the strands are interwoven across domains of
mathematics in such a way that conceptual understanding in one domain, say
geometry, supports conceptual understanding in another, say number.

All Students Should Be
Mathematically Proficient

Becoming mathematically proficient is necessary and appropriate for all
students.  People sometimes assume that only the brightest students who are
the most attuned to school can achieve mathematical proficiency.  Those stu-
dents are the ones who have traditionally tended to achieve no matter what
kind of instruction they have encountered.  But perhaps surprisingly, it is
students who have historically been less successful in school who have the
most potential to benefit from instruction designed to achieve proficiency.70

All will benefit from a program in which mathematical proficiency is the goal.
Historically, the prevailing ethos in mathematics and mathematics edu-

cation in the United States has been that mathematics is a discipline for a
select group of learners.  The continuing failure of some groups to master
mathematics—including disproportionate numbers of minorities and poor
students—has served to confirm that assumption.  More recently, mathematics
educators have highlighted the universal aspects of mathematics and have
insisted on mathematics for all students, but with little attention to the dif-
ferential access that some students have to high-quality mathematics teach-
ing.71

One concern has been that too few girls, relative to boys, are developing
mathematical proficiency and continuing their study of mathematics.  That
situation appears to be improving, although perhaps not uniformly across
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grades.  The 1990 and 1992 NAEP assessments indicated that the few gen-
der differences in mathematics performance that did appear favored male
students at grade 12 but not before.  These differences were only partly
explained by the historical tendency of male students to take more high school
mathematics courses than female students do, since that gap had largely closed
by 1992.  In the 1996 NAEP mathematics assessment, the average scores for
male and female students were not significantly different at either grade 8 or
grade 12, but the average score for fourth-grade boys was 2% higher than the
score for fourth-grade girls.72

With regard to differences among racial and ethnic groups, the situation
is rather different.  The racial/ethnic diversity of the United States is much
greater now than at any previous period in history and promises to become
progressively more so for some time to come.  The strong connection be-
tween economic advantage, school funding, and achievement in the United
States has meant that groups of students whose mathematics achievement is
low have tended to be disproportionately African American, Hispanic, Native
American, students acquiring English, or students located in urban or rural
school districts.73   In the NAEP assessments from 1990 to 1996, white students
recorded increases in their average mathematics scores at all grades.  Over
the same period, African American and Hispanic students recorded increases
at grades 4 and 12, but not at grade 8.74   Scores for African American, His-
panic, and American Indian students remained below scale scores for white
students.  The mathematics achievement gaps between average scores for
these subgroups did not decrease in 1996.75   The gap appears to be widening
for African American students, particularly among students of the best-
educated parents, which suggests that the problem is not one solely of poverty
and disadvantage.76

Students identified as being of middle and high socioeconomic status
(SES) enter school with higher achievement levels in mathematics than low-
SES students, and students reporting higher levels of parental education tend
to have higher average scores on NAEP assessments.  At all three grades, in
contrast, students eligible for free or reduced-price lunch programs score lower
than those not eligible.77   Such SES-based differences in mathematics achieve-
ment are greater among whites than among other racial or ethnic groups.78

Some studies have suggested that the basis for the differences resides in the
opportunities available to students, including opportunities to attend effec-
tive schools,79  opportunities afforded by social and economic factors of the
home and school community,80  and opportunities to get encouragement to
continue the study of mathematics.81
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Goals for mathematics instruction like those outlined in our discussion of
mathematical proficiency need to be set in full recognition of the differential
access students have to high-quality mathematics teaching and the differen-
tial performance they show.  Those goals should never be set low, however, in
the mistaken belief that some students do not need or cannot achieve profi-
ciency.  In this day of rapidly changing technologies, no one can anticipate all
the skills that students will need over their lifetimes or the problems they
will encounter.  Proficiency in mathematics is therefore an important founda-
tion for further instruction in mathematics as well as for further education in
fields that require mathematical competence.  Schools need to prepare stu-
dents to acquire new skills and knowledge and to adapt their knowledge to
solve new problems.

The currency of value in the job market today is more than computa-
tional competence.  It is the ability to apply knowledge to solve problems.82

For students to be able to compete in today’s and tomorrow’s economy, they
need to be able to adapt the knowledge they are acquiring.  They need to be
able to learn new concepts and skills.  They need to be able to apply math-
ematical reasoning to problems.  They need to view mathematics as a useful
tool that must constantly be sharpened.  In short, they need to be mathemati-
cally proficient.

Students who have learned only procedural skills and have little under-
standing of mathematics will have limited access to advanced schooling, better
jobs, and other opportunities.  If any group of students is deprived of the
opportunity to learn with understanding, they are condemned to second-class
status in society, or worse.

A Broader, Deeper View

Many people in the United States consider procedural fluency to be the
heart of the elementary school mathematics curriculum.  They remember
school mathematics as being devoted primarily to learning and practicing com-
putational procedures.  In this report, we present a much broader view of
elementary and middle school mathematics.  We also raise the standard for
success in learning mathematics and being able to use it.  In a significant and
fortuitous twist, raising the standard by requiring development across all five
strands of mathematical proficiency makes the development of any one strand
more feasible.  Because the strands interact and boost each other, students
who have opportunities to develop all strands of proficiency are more likely
to become truly competent with each.
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We conclude that during the past 25 years mathematics instruction in
U.S. schools has not sufficiently developed mathematical proficiency in the
sense we have defined it.  It has developed some procedural fluency, but it
clearly has not helped students develop the other strands very far, nor has it
helped them connect the strands.  Consequently, all strands have suffered.
In the next four chapters, we look again at students’ learning.  We consider
not just performance levels but also the nature of the learning process itself.
We describe what students are capable of, what the big obstacles are for them,
and what knowledge and intuition they have that might be helpful in design-
ing effective learning experiences.  This information, we believe, reveals how
to improve current efforts to help students become mathematically proficient.
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5
THE MATHEMATICAL KNOWLEDGE

CHILDREN BRING TO SCHOOL

Children begin learning mathematics well before they enter elementary
school.  Starting from infancy and continuing throughout the preschool period,
they develop a base of skills, concepts, and misconceptions about numbers
and mathematics.  The state of children’s mathematical development as they
begin school both determines what they must learn to achieve mathematical
proficiency and points toward how that proficiency can be acquired.

Chapter 4 laid out a framework for describing mathematical proficiency
in terms of a set of interwoven strands.  That framework is useful in thinking
about the skills and knowledge that children bring to school, as well as the
limitations of preschoolers’ mathematical competence.  Applying the frame-
work to research on preschoolers’ mathematical thinking also provides a good
example of the way in which the strands of proficiency are interwoven and
interdependent.  Preschoolers’ mathematical thinking rests on a combina-
tion of conceptual understanding, procedural fluency, strategic competence,
adaptive reasoning, and productive disposition.  During the last 25 years, devel-
opmental psychologists and mathematics educators have made substantial
progress in understanding the ways in which these strands interact.  In this
chapter we describe the current state of knowledge concerning the profi-
ciency that children bring to school, some of the factors that account for limi-
tations in their mathematical competence, and current understanding about
what can be done to ensure that all children enter school prepared for the
mathematical demands of formal education.
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Preschoolers’ Mathematical Proficiency
Conceptual Understanding

The most fundamental concept in elementary school mathematics is that
of number, specifically whole number.  To get a sense of both the difficulty of
the concept and how much of it is taken for granted, try to define what a
whole number is.

One common conception of whole number says that two sets have the
same numerosity (same number of members) if and only if each member of
one set can be paired with exactly one member of the other (with no members
left over from either set).  If one set has members left over after this pairing,
then that set has a greater numerosity (more items in it) than the other does.

This definition allows one to decide whether two sets have the same
number of items without knowing how many there are in either set.  The
Swiss psychologist Jean Piaget developed a task based in part on this defini-
tion that has been widely used to assess whether children understand the
critical importance of this one-to-one correspondence in defining numerosity.1

In this task, children are shown an array like the one below, which might
represent candies.  They are then asked a question like the following: Are
there more light candies, the same number of dark and light candies, or more
dark candies?

Most preschoolers recognize that the sets have the same amount of candy,
based on the one-to-one alignment of the individual pieces.  Next, the child
watches the experimenter spread out the items in one set, which alters the
spatial alignment of the pieces:

Shown this diagram, many children younger than 5 years assert that there
are more of whichever kind of candy is in the longer row (the light candies in
this example).  Piaget argued that a true understanding of number requires
an ability to reason about the effects of transformations that is beyond the
capacity of preschool children.  It was not uncommon several decades ago for
educators aware of Piaget’s findings and his claims to make assertions such as
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the following: “Children at different stages cannot learn the same content.
They cannot learn about number, for example, until they reach the concrete
operational stage [roughly ages 7 to 11, according to Piaget].”2

Research over the last 25 years, however, suggests that preschool chil-
dren in fact know quite a bit about number before they enter school.  Much
of that knowledge is tied up with their understanding of counting.  Even for
preschoolers, the act of counting a set of objects is not entirely a rote activity
but is guided by their mathematical understanding.

Counting and the Origins of the Number Concept

Babies show numerical competence almost from the day they are born,3

and some infants younger than six months have shown they can perform a
rudimentary kind of addition and subtraction.4   These abilities suggest that
number is a fundamental component of the world children know.  Whether
and how this early sensitivity to number affects later mathematical develop-
ment remains to be shown, but children enter the world prepared to notice
number as a feature of their environment.

Much of what preschool children know about number is bound up in
their developing understanding and mastery of counting.  Counting a set of
objects is a complex task involving thinking, perception, and movement, with
much of its complexity obscured by familiarity.  Consider what you need to
do to count a set of objects: The items to be counted must be identified and
distinguished from items not to be counted, as well as from those that have
already been counted.  Items are counted by pairing each one with some sort
of verbal representation (typically a number name).  An indicating act is needed
that pairs each object in space with a word said in time.  Finally, you need to
understand that counting results in a number that represents how many things
are in the set that was counted.

Competent counting requires mastery of a symbolic system, facility with
a complicated set of procedures that require pointing at objects and designat-
ing them with symbols, and understanding that some aspects of counting are
merely conventional, while others lie at the heart of its mathematical useful-
ness.  We discuss issues related to competent counting, including the learn-
ing of number names, in the section on procedural fluency below.  In this
section, we discuss children’s understanding of the conceptual aspects of count-
ing.  This separation is somewhat artificial because counting is a good ex-
ample of the way in which the different strands of mathematical proficiency
are interwoven.

Preschool
children
in fact
know quite
a bit about
number
before they
enter school.
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As children learn to count, their thinking changes in a way that shapes
their concept of number.  Counting is not simply reciting the number word
sequence.  There must be items to count; and there must be a procedure to
make each utterance of a number word correspond with one of the items to
be counted.5   At first, these items are perceptual; they might be, for example,
beads, marbles, fingers, taps, steps, or drumbeats.  The child must not only
be able to perceive the items but also to conceive of them as individual things
to be counted.  Later, children become able to count sets of things (e.g., “how
many different colors of buttons are there?”) as well as items that may not be
readily perceivable.6   The counter must always create a mental representa-
tion of the items that are counted.  This process of creation is clearly demon-
strated when a child appears to count specific items in a situation where no
such items are visible, audible, or tangible.  Counting in the absence of per-
ceivable objects is the culmination of a rather intricate developmental process.
The process includes the progressive development of an ability to create unit
items to be counted, first on the basis of conscious perception of external
objects and then on the basis of internal representations.7

Early research on children’s understanding of the mathematical basis for
counting focused on five principles their thinking must follow if their count-
ing is to be mathematically useful:8

1. One-to-one: there must be a one-to-one relation between counting
words and objects;

2. Stable order (of the counting words): these counting words must be
recited in a consistent, reproducible order;

3. Cardinal: the last counting word spoken indicates how many objects
are in the set as a whole (rather than being a property of a particular object in
the set);

4. Abstraction: any kinds of objects can be collected together for pur-
poses of a count; and

5. Order irrelevance (for the objects counted): objects can be counted in
any sequence without altering the outcome.

The first three principles define rules for how one ought to go about count-
ing; the last two define circumstances under which such counting procedures
should apply.
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Understanding Counting and Mastering It

The relation between children’s conceptual understanding of counting
and their mastery of conventional counting remains controversial.  According
to one viewpoint,9  children’s emerging understanding of these counting
principles organizes and motivates their acquisition of conventional counting
procedures.  Other studies indicate that much of children’s conceptual under-
standing of counting follows (and may be based on) an initial mastery of con-
ventional counting procedures.10   An intermediate view is that conceptual
and procedural knowledge of counting develop interactively, with small
changes in one contributing to small changes in the other.11

One reason it has been hard to resolve contrasting claims about how chil-
dren come to understand the conceptual basis for counting is that preschoolers’
performance when they count is often quite variable, as it is with most other
tasks.12   The many errors preschoolers make when counting could indicate
that they fail to understand the importance of the counting principles.  The
variability of their performance makes fundamentally ambiguous the task of
inferring their knowledge of principles from their behavior.  A child’s diffi-
culty in managing the complex processes involved in counting could mask a
real understanding of its conceptual basis.

One way of circumventing the ambiguity of children’s counting behavior
involves asking them to judge the adequacy someone else’s counting rather
than perform the activity themselves.  For example, asked to judge the accu-
racy of counting by a puppet who counted either correctly, incorrectly, or
unconventionally (e.g., starting from an unusual starting point but counting
all of a set of items), 3- to 5-year-olds demonstrated very good performance.
Three-year-olds showed perfect acceptance of correct counting, 96% accep-
tance of unconventional but correct counting, and 67% rejection of real errors.
Four-year-olds were better than 3-year-olds at rejecting true errors.13

Presented with a larger set of counting strategies to judge, children in a
later study did not perform quite as well.14   In fact, 3-year-olds’ acceptance of
unconventional correct counting was actually higher than that of 4-year-olds,
suggesting that some of the acceptance of unconventional correct counting
came from a blanket acceptance of the puppet’s performance.  Finally, and
most relevant to the relation between counting skill and judgment of another’s
counting, the only children who failed to meet a criterion of 75% correct in
rejecting the puppet’s counting errors also failed to meet the same criterion
in their own counting.  Thus, children’s own counting activity might form the
basis for their judgments of what constitutes successful counting.
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There are also important limits on children’s ability to use counting in
problem solving.  Several studies have found that children 3 years and younger
have a great deal of difficulty in using counting to produce sets of a given
numerosity, even when that numerosity is well within their counting range.15

Taken as a whole, these studies indicate that variations in the context in
which children are asked to judge another’s counting can have a great effect
on their acceptance of deviations from conventional counting and of errors
that violate the counting principles.  The ability of young preschool children
to follow counting principles in their own counting and to focus on them in
evaluating the counting of others is also quite vulnerable to situational
variations.16

The controversy about the relation between how understanding of count-
ing principles develops and how conventional counting ability is acquired
echoes issues that emerge throughout children’s later mathematics learning.
Nevertheless, two points are clear.  First, both aspects of counting are impor-
tant developmental acquisitions.  Second, by the time they enter kindergarten,
most U.S. children understand the rules that underlie counting, can perform
conventional counting correctly with sets of objects greater than 10, and can
use counting to solve some simple mathematical problems.

Procedural Fluency

Procedural fluency refers to the ability to perform procedures flexibly,
accurately, and efficiently.  As we noted in Chapter 4, procedural fluency
makes it possible for children to use mathematics reliably to solve problems
and generate examples to test their mathematical ideas.

Procedural Fluency and Counting

In the case of counting, the difficulties young children have in fluently
performing the complex activities required to count a set of objects accu-
rately are a major obstacle to their mathematical development.  For example,
when asked to count increasingly longer row of up to 30 objects, 90% of 3 1

2 -
to 4 1

2 -year-olds made some kind of violation of the one-to-one correspon-
dence between pointing and objects or between pointing and saying the num-
ber words, although these errors were made on only 6% of the sets of objects
counted.17   Directives to “try hard” or “be careful” decreased errors sub-
stantially.  Thus, effort and concentration are important aspects of accurate
counting.
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The difficulty preschoolers have in coordinating the process of keeping
track of objects and counting them seems to be a universal characteristic of
learning to count, with children in different cultures showing comparable rates
of recounting or skipping objects.18   Large differences across languages have
been found in a second key aspect of procedural fluency in the preschool
period, the mastery of the set of number names used in the child’s native
language.

Language and Early Mathematical Development

One aspect of counting that preschool children find particularly difficult
is learning the number names.  Learning a list of number names up to 100 is
a challenging task for young children.  Furthermore, the structure of the
number names in a language is a major influence on the difficulties children
have in learning to count correctly.  These difficulties have important impli-
cations for the initial learning of mathematics in elementary school.

The number names used in a language provide children with a readymade
representation for number.  Counting principles are universal and so do not
differ between languages, but number names do differ in sound and struc-
ture across languages and influence children’s learning to count.

Linguistic structure of number names. Names for numbers
have been generated according to a bewildering variety of systems.19   The
Hindu-Arabic system for representing the whole numbers is clearly a base-10
system, with 10 basic symbols (the digits 0–9).  These may be freely com-
bined, with the place of a digit indicating the power of 10 that it represents.20

The Hindu-Arabic system is a useful reference point in describing number-
naming schemes for two reasons.  First, it is a widely used system for writing
numbers.  Second, it is as consistent and concise as a base-10 system could
be.

Box 5-1 shows how spoken names for numbers are formed in three
languages: English, Spanish, and Chinese.  All of these languages use a base-10
system, but the languages differ in the clarity and consistency with which the
base-10 structure is reflected in the number names.

As the first section of the figure shows, representations for numbers from
1 to 9 consist of an unsystematically organized list.  There is no way to predict
that 5 or five or wu come after 4, four, and si, respectively, in the Arabic numeral,
English, and Chinese systems.
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Box 5-1

Number Names in Chinese, English, and Spanish

a. One to ten

Arabic numeral 1 2 3 4 5

Chinese (spoken) yi er san si wu

English one two three four five

Spanish uno dos tres cuatro cinco

b. Eleven to twenty

Arabic numeral 11 12 13 14 15

Chinese (spoken) shi yi shi er shi san shi si shi wu

English eleven twelve thirteen fourteen fifteen

Spanish once doce trece catorce quince

c. Twenty to ninety-nine

Language Rule

Chinese (spoken) Decade name (unit name + shi) + unit name

English Decade name [(twen, thir, for, fif, six, seven, eight, nine)
+ -ty] + unit name

Spanish Decade name (veinte, treinta, cuarenta, cincuenta,
sesenta, setenta, ochenta, noventa) + and (y) + unit name
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6 7 8 9 10

liu qi ba jiu shi

six seven eight nine ten

seis siete ocho nueve diez

16 17 18 19 20

shi liu shi qi shi ba shi jiu er shi

sixteen seventeen eighteen nineteen twenty

diez y seis diez y siete diez y ocho diez y nueve veinte

Example

san  shi  qi

thirty-seven

trenta y siete
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Names for numbers above 10 diverge in interesting ways among these
different languages, as the second part of Box 5-1 demonstrates.  The Chinese
number-naming system maps directly onto the Hindu-Arabic number system
used to write numerals.  For example, a word-for-word translation of shi qi
(17) into English produces ten-seven.  English has unpredictable names for 11
and 12 that bear only a historical relation to one and two.21   Whether the bound-
ary between 10 and 11 is marked in some way can be very significant because
this boundary can offer the first clue that number names are organized accord-
ing to a base-10 system.  The English names for numbers in the teens beyond
12 do have an internal structure, but it is obscured by phonetic modifications
of many of the elements used in the first 10 numbers (e.g., ten becomes -teen,
three becomes thir-, and five becomes fif-).  Furthermore, the order of word
formation reverses the place value, unlike the Hindu-Arabic and Chinese
systems (and the English system above 20), naming the smaller value before
the larger value.  Spanish follows the same basic pattern for English to begin
the teens, although there may be a clearer parallel between uno, dos, tres and
once, doce, trece than between one, two, three and eleven, twelve, thirteen.  The
biggest difference between Spanish and English is that after 15 the number
names in Spanish abruptly take on a different structure.  Thus the name for
16 in Spanish, diez y seis (literally ten and six), follows the same basic structure
as Arabic numerals and Chinese number names (starting with the tens value
and then naming the ones value), rather than the structures of the number
names in English from 13 to 19 and the names in Spanish from 11 to 15 (start-
ing with the ones value and then naming the tens value).

Above 20, all these number-naming systems converge on the Chinese
structure of naming the larger value before the smaller one.  Despite this
convergence, the systems continue to differ in the clarity of the connection
between the decade names and the corresponding unit values.  Chinese
numbers are consistent in forming decade names by combining a unit value
and the base (ten).  Decade names in English and Spanish generally can be
derived from the name for the corresponding unit value, with varying degrees
of phonetic modification (e.g., five becomes fif- in English, cinco becomes
cincuenta in Spanish) and with some notable exceptions, primarily the special
name for 20 used in Spanish.

Psychological consequences of number names. Although
all the number-naming systems being reviewed are essentially base-10
systems, they differ in the consistency and transparency with which that struc-
ture is reflected in the number names.  Several studies comparing English-
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and Chinese-speaking children demonstrate that the organization of number
names does indeed play a significant role in mediating children’s mastery of
this symbolic system.22   These studies have reported that (a) differences in
performance on counting-related tasks do not emerge until children in both
the United States and China begin learning the second decade of number
names, sometime between 3 and 4 years of age; (b) those differences are
generally limited to the verbal aspect of counting, rather than affecting
children’s ability to use counting in problem solving or their understanding of
basic counting principles; and (c) differences in the patterns of mistakes that
children make in learning to count reflect the structure of the systems they
are learning.

Research on children’s acquisition of number names suggests that U.S.
children learn to recite the list of English number names through at least the
teens as essentially a rote-learning task,23  though occasional errors such as
“fiveteen” suggest that some children notice the structure of the counting
words for 13 through 19 that is partially obscured by linguistic modifications.24

When first counting above 20, American preschoolers often produce idio-
syncratic number names, indicating that they fail to understand the base-10
structure underlying larger number names; for instance, they might count
“twenty-eight, twenty-nine, twenty-ten, twenty-eleven, twenty-twelve.”  This
kind of mistake is extremely rare for Chinese children and indicates that the
base-10 structure of number names is more accessible for learners of Chinese
than it is for children learning to count in English.

The relative complexity of English number names has other cognitive
consequences.  Speakers of English and other European languages face a
complex task in learning to write Arabic numerals, one that is more difficult
than that faced by speakers of Chinese.25   (For example, compare the map-
ping between name and numeral for twenty-four with that for fourteen in the
two languages.)  Speakers of languages whose number names are patterned
after Chinese (including Korean and Japanese) are better able than speakers
of English and other European languages to represent numbers using base-
10 blocks and to perform other place-value tasks.26   Because school arith-
metic algorithms are largely structured around place value, the finding of a
relationship between the complexity of number names and the ease with
which children learn to count has important educational implications.

When learning to count, children must acquire a combination of conven-
tional knowledge of number names, conceptual understanding of the math-
ematical principles that underlie counting, and ability to apply that knowledge
in solving mathematical problems.  Language differences during preschool
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appear to be limited to the first aspect of learning to count.  In one study, for
example, Chinese and American preschoolers did not differ in the extent to
which they violated the previously discussed counting principles or in their
ability to use counting to produce sets of a given size in the course of a game.27

The effects of differences in number name structure on children’s early math-
ematical development appear to be very specific to those aspects of math-
ematics that require the learning and use of these symbol systems.  Never-
theless, these effects have implications for learning Arabic numerals and thus
for understanding the principal symbol system used in school mathematics.

As with other aspects of mathematics, counting requires combining a
conceptual understanding of the nature of number with a fluent mastery of
procedures that allow one to determine how many objects there are.  When
children can count consistently to figure out how many objects there are,
they are ready to use counting to solve problems.  It also helps support their
learning of conventional arithmetic procedures, such as those involved in com-
putation with whole numbers.

Preschool children bring a variety of procedures to the task of learning
simple arithmetic.  Most of these procedures begin with strategic application
of counting to arithmetic situations, and they are described in the next section.
As with the distinction between conceptual understanding and procedural
fluency, this categorization is somewhat arbitrary, but it provides a good
example of how children can build on procedures such as counting in extend-
ing their mathematical competence to include new concepts and procedures.

Strategic Competence

Strategic competence refers to the ability to formulate mathematical prob-
lems, represent them, and solve them.  An important feature of mathematical
development is the way in which situations that involve extended problem
solving at one point can later be handled fluently with known procedures.

Simple arithmetic tasks provide a good example.  Most preschoolers show
that they can understand and perform simple addition and subtraction by at
least 3 years of age, often by modeling with real objects or thinking about sets
of objects.  In one study, children were presented with a set of objects of a
given size that were then hidden in a box, followed by another set of objects
that were also placed in the box.28   The children were asked to produce a set
of objects corresponding to the total number contained in the box.  The
majority of children around age 3 were able to solve such problems when
they involved adding and subtracting a single item, although their perfor-
mance decreased quickly as the size of the second set increased.
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Preschool arithmetic: A wealth of strategies. Much
research has described the diversity of strategies that children show in per-
forming simple arithmetic, from preschool well into elementary school.29   Strat-
egies for solving a problem such as “What is 3 + 5?” include counting all (“1,
2, 3, . . . 4, 5, 6, 7, 8”), counting on from the larger addend (“5, . . . 6, 7, 8”),
deriving the sum (“3 + 5 is like 4 + 4, so it’s 8”), and recall.  Some children will
model the problem using available object or fingers; others will do it verbally.
(These strategies are discussed in detail in Chapter 6.)

Kindergartners use all of these strategies, and second graders use all of
them except for counting all.30   What changes with age is the distribution of
strategies, not the use of completely new ones.  When 5-year-olds were given
four individual sessions over 11 weeks in which they solved more than 100
addition problems, most of them discovered the counting-on-from-larger
strategy, which saves effort by requiring them to do less counting.31   The
children typically first identified this strategy when they were working with
small numbers, where it does not save much effort.  They then were most
likely to apply it to problems (e.g., “What is 2 + 9?”) in which it makes a big
difference in the amount of work needed.

The diversity of strategies that children show in early arithmetic is a fea-
ture of their later mathematical development as well.  In some circumstances
the number of different strategies children show predicts their later learn-
ing.32   The fact that children are inventing their own diverse strategies for
doing arithmetic creates its own educational issues, however, as teachers need
to be able to help children understand why some strategies work and others
do not and to help them move on to advanced strategies.

Solving word problems. Young children are able to make sense of
the relationships between quantities and to come up with appropriate count-
ing strategies when asked to solve simple word, or story, problems.  Word
problems are often thought to be more difficult than simple number sentences
or equations.  Young children, however, find them easier.  If the problems
pose simple relationships and are phrased clearly, preschool and kindergarten
children can solve word problems involving addition, subtraction, multiplica-
tion, or division.33   Young children are extremely sensitive to context, how-
ever, so the way in which the problem is posed can make a big difference in
their performance.  For example, if a picture of five birds and four worms is
shown to preschoolers, most of them can answer the following: “Suppose the
birds all race over and each one tries to get a worm.  Will every bird get a
worm?  How many birds won’t get a worm?”  But fewer of them can answer
the question, “How many more birds than worms are there?”34
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In addition to using counting to solve simple arithmetic problems, pre-
school children show understanding at an early age that written marks on
paper can preserve and communicate information about quantity.35   For
example, 3- and 4-year-olds can invent informal marks on paper, such as tally
marks and diagrams, to show how many objects are in a set.  But they are less
able to represent changes in sets or relationships between sets, in part because
they fail to realize that the order of their actions is not automatically pre-
served on paper.

Adaptive Reasoning

Adaptive reasoning refers to the capacity to think logically about the rela-
tionships among concepts and situations and to justify and ultimately prove
the correctness of a mathematical procedure or assertion.  Adaptive reasoning
also includes reasoning based on pattern, analogy, or metaphor.  Research
suggests that young children are able to display reasoning ability if they have
a sufficient knowledge base, if the task is understandable and motivating,
and if the context is familiar and comfortable.36   In particular, preschool chil-
dren can generate solutions to problems and can explain their thinking.

Situations that require preschoolers to use their mathematical concepts
and procedures in unconventional ways often cause them difficulty.  For
example, when preschool children are asked to count features of objects (e.g.,
the tines of forks) or subsets of objects (e.g., just the red buttons in a mixed
set), they often cannot overcome their tendency to count all the separate
objects.37

Another example of the limitations on preschoolers’ ability to generalize
their mathematics is that they perform better in situations that require them
to think about adding or subtracting actual objects (even if those objects are
hidden from view in a box) than they do when simply asked an equivalent
question (e.g., “What’s 3 and 5?”).38   Four- and 5-year-olds do begin to use
their knowledge to answer correctly the Piagetian number task presented
above involving equivalent sets of candies, and later they recognize without
counting that the sets have the same number of candies.39

Most preschool children enter school with an initial understanding of pro-
cedures (e.g., counting, addition, subtraction) that forms the basis for much
of their later mathematics learning, although they have limited ability to gener-
alize that knowledge and to understand its importance.  A major challenge of
formal education is to build on the initial and often fragile understanding that
children bring to school and to make it more reliable, flexible, and general.40
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Productive Disposition

In addition to the concepts and skills that underlie mathematical profi-
ciency, children who are successful in mathematics have a set of attitudes and
beliefs that support their learning.  They see mathematics as a meaningful,
interesting, and worthwhile activity; believe that they are capable of learning
it; and are motivated to put in the effort required to learn.  Reports on the
attitudes of preschoolers toward learning in general and learning mathematics
in particular suggest that most children enter school eager to become compe-
tent at mathematics.  In a survey that examined a number of personality and
motivational features relevant to success in mathematics, teachers and parents
reported that kindergarteners have high levels of persistence and eagerness
to learn (although teachers differed in their perceptions of children from dif-
ferent ethnic groups, as we discuss below).41   Children enter school viewing
mathematics as important and themselves as being competent to master it.
In one study, first graders rated their interest in mathematics on average at
approximately 6 on a scale from 1 to 7 (with 7 being the highest).42   Children
gave similar ratings to their competence in mathematics, with boys giving
somewhat higher ratings for their mathematics competence than girls did,
the opposite of the pattern for reading.

One important factor in attaining a productive disposition toward math-
ematics and maintaining the motivation required to learn it is the extent to
which children perceive achievement as the product of effort as opposed to
fixed ability.  Extensive research in the learning of mathematics and other
domains has shown that children who attribute success to a relatively fixed
ability are likely to approach new tasks with a performance rather than a learn-
ing orientation, which causes them to show less interest in putting themselves
in challenging situations that result in them (at least initially) performing
poorly.43   Preschoolers generally enter school with a learning orientation, but
already by first grade a sizable minority react to criticism of their performance
by inferring that they are not smart rather than that they just need to work
harder.44

Most preschoolers enter school interested in mathematics and motivated
to learn it.  The challenge to parents and educators is to help them maintain
a productive disposition toward mathematics as they develop the other strands
of their mathematical proficiency.
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Limitations of Preschoolers’ Mathematical Proficiency

In some circumstances, preschool children show impressive mathematical
abilities that can provide the basis for their later learning of school mathematics.
These abilities are, however, limited in a number of important ways.

One of the most important limitations is that much of preschoolers’ under-
standing of number is constrained to sets of a certain size.  Because the algo-
rithms that preschoolers develop are based on counting and on their experience
with sets of objects, they do not generalize to larger numbers.  For example,
preschool children can show a mastery of the concepts of addition and sub-
traction for very small numbers.45   But being able to predict the results of
adding one to a number does not imply that children will be able to predict
the results of adding two to the same number.  This limitation is an important
feature of preschool mathematical thinking and is an important way in which
preschool mathematical proficiency differs from adult proficiency.

Another important limitation is that preschoolers’ thinking about arith-
metic is influenced heavily by the context of the problem.  As stated above,
the way in which a word problem is phrased can be the difference between
success and failure.  Furthermore, if children succeed, the strategy they use
is a direct model of the story; they, in effect, act out the story to find the
answer.  They will need to make several advances in development before
they realize that a few basic counting strategies can be used to solve a wide
variety of word problems, that stories can be represented by written number
sentences of the form a + b = c or a – b = c, and that many different stories can
be represented by the same sentence.

Equity and Remediation

Most U.S. children enter school with mathematical abilities that provide
a strong base for formal instruction in mathematics.  These abilities include
understanding the magnitudes of small numbers, being able to count and to
use counting to solve simple mathematical problems, and understanding many
of the basic concepts underlying measurement.  For example, a large survey
of U.S. kindergartners found that 94% of first-time kindergartners passed their
Level 1 test (counting to 10 and recognizing numerals and shapes) and 58%
passed their Level 2 test (reading numerals, counting beyond 10, sequencing
patterns, and using nonstandard units of length to compare objects).46

A number of children, however, particularly those from low socioeconomic
groups, enter school with specific gaps in their mathematical proficiency.  For
example, the survey of kindergartners found that while 79% of children whose
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mother had a bachelor’s degree passed the Level 2 test described above, only
32% of those whose mother had less than a high school degree could do so.47

The same survey found large differences between ethnic groups on the more
difficult tests (but not on the Level 1 tasks) with 70% of Asian and 66% of
non-Hispanic white children passing the Level 2 tasks, but only 42% of African
American, 44% of Hispanic, 48% of Hawaiian Native or Pacific Islander, and
34% of American Indian or Alaska Native participants doing so.48   Other
research has shown that children from lower socioeconomic backgrounds have
particular difficulty understanding the relative magnitudes of single-digit
whole numbers49  and solving addition and subtraction problems verbally rather
than using objects.50   Overall, the research shows that poor and minority chil-
dren entering school do possess some informal mathematical abilities but that
many of these abilities have developed at a slower rate than in middle-class
children.51   This immaturity of their mathematical development may account
for the problems poor and minority children have understanding the basis for
simple arithmetic and solving simple word problems.52

Several promising approaches have been developed to deal with this
developmental immaturity in mathematical knowledge.  For example, the
Rightstart program consists of a set of games and number-line activities aimed
at providing children needing remedial assistance with an understanding of
the relative magnitudes of numbers.  Twenty minutes a day over a three- to
four-month period in kindergarten was successful in bringing these children’s
mathematical knowledge up to a level commensurate with their peers, gains
that persisted through the end of first grade.53

Another intervention is aimed at ensuring that Latino children under-
stand the base-10 structure of number names, something that, as noted above,
U.S. children in general find confusing.54   Performance at the end of a year-
long intervention was at levels comparable to those reported for Asian children
and substantially above those typically reported for nonminority children.
Taken together, these results suggest that relatively simple interventions may
yield substantial payoffs in ensuring that all children enter or leave first grade
ready to profit from mathematics instruction.

The kindergarten survey cited above reported smaller ethnic differences
in factors related to productive disposition (persistence, eagerness to learn,
and ability to pay attention) than in mathematical knowledge.  There were,
however, some noteworthy differences between the reports of teachers and
parents for different ethnic groups.  Parents reported high levels of eagerness
to learn (e.g., 93% for non-Hispanic whites, 90% for non-Hispanic African
Americans, and 90% for Hispanics), but teachers differed in their judgments
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of eagerness (judging 78% of non-Hispanic whites, 66% of non-Hispanic
African Americans, and 70% of Hispanics as eager to learn).  Teachers and
parents are, of course, judging children against different comparison groups,
but the data at least raise the possibility that kindergarten teachers may be
underestimating the eagerness of their students to learn mathematics.

Preschool Children’s Proficiency

For preschool children, the strands of mathematical proficiency are par-
ticularly closely intertwined.  Although their conceptual understanding is lim-
ited, as their understanding of number emerges they become able to count
and solve simple problems.  It is only when they move beyond what they
informally understand—to the base-10 system for teens and larger numbers,
for example—that their fluency and strategic competencies falter.  Young
children also show a remarkable ability to formulate, represent, and solve
simple mathematical problems and to reason and explain their mathematical
activities.  The desire to quantify the world around them seems to be a natu-
ral one for young children.  They are positively disposed to do and under-
stand mathematics when they first encounter it.

Most U.S. children enter school with a basic understanding of number
and number concepts that can form the foundation for learning school math-
ematics, but their knowledge is limited in some very important ways.  Pre-
school children generally show a much more sophisticated understanding of
small numbers than they do of larger numbers.  They also have a great deal of
difficulty in moving from the number names in languages such as English
and Spanish to understanding the base-10 structure of number names and
mastering the Arabic numerals used in school mathematics.  Furthermore,
not all children enter school with the intuitive understanding of number
described above and assumed by the elementary school curriculum.  Recent
research suggests that effective methods exist for providing this basic under-
standing of number.
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6
DEVELOPING PROFICIENCY

WITH WHOLE NUMBERS

Whole numbers are the easiest numbers to understand and use.  As we
described in the previous chapter, most children learn to count at a young age
and understand many of the principles of number on which counting is based.
Even if children begin school with an unusually limited facility with number,
intensive instructional activities can be designed to help them reach similar
levels as their peers.1   Children’s facility with counting provides a basis for
them to solve simple addition, subtraction, multiplication, and division prob-
lems with whole numbers.  Although there still is much for them to work out
during the first few years of school, children begin with substantial knowl-
edge on which they can build.

In this chapter, we examine the development of proficiency with whole
numbers.  We show that students move from methods of solving numerical
problems that are intuitive, concrete, and based on modeling the problem
situation directly to methods that are more problem independent, mathemati-
cally sophisticated, and reliant on standard symbolic notation.  Some form of
this progression is seen in each operation for both single-digit and multidigit
numbers.

We focus on computation with whole numbers because learning to
compute can provide young children the opportunity to work through many
number concepts and to integrate the five strands of mathematical proficiency.
This learning can provide the foundation for their later mathematical devel-
opment.  Computation with whole numbers occupies much of the curricu-
lum in the early grades, and appropriate learning experiences in these grades
improve children’s chances for later success.
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Whole number computation also provides an instructive example of how
routine-appearing procedural skills can be intertwined with the other strands
of proficiency to increase the fluency with which the skills are used.  For
years, learning to compute has been viewed as a matter of following the
teacher’s directions and practicing until speedy execution is achieved.  Changes
in career demands and the tasks of daily life, as well as the availability of new
computing tools, mean that more is now demanded from the study of compu-
tation.  More than just a means to produce answers, computation is increas-
ingly seen as a window on the deep structure of the number system.  Fortu-
nately, research is demonstrating that both skilled performance and conceptual
understanding are generated by the same kinds of activities.  No tradeoffs are
needed.  As we detail below, the activities that provide this powerful result
are those that integrate the strands of proficiency.

Operations with Single-Digit Whole Numbers

As students begin school, much of their number activity is designed to
help them become proficient with single-digit arithmetic.  By single-digit arith-
metic, we mean the sums and products of single-digit numbers and their
companion differences and quotients (e.g., 5 + 7 = 12, 12 – 5 = 7, 12 – 7 = 5
and 5 × 7 = 35, 35 ÷ 5 = 7, 35 ÷ 7 = 5).  For most of a century, learning single-
digit arithmetic has been characterized in the United States as “learning ba-
sic facts,” and the emphasis has been on memorizing those facts.  We use the
term basic number combinations to emphasize that the knowledge is relational
and need not be memorized mechanically.  Adults and “expert” children use
a variety of strategies, including automatic or semiautomatic rules and
reasoning processes to efficiently produce the basic number combinations.2

Relational knowledge, such as knowledge of commutativity, not only pro-
motes learning the basic number combinations but also may underlie or affect
the mental representation of this basic knowledge.3

The domain of early number, including children’s initial learning of single-
digit arithmetic, is undoubtedly the most thoroughly investigated area of school
mathematics.  A large body of research now exists about how children in many
countries actually learn single-digit operations with whole numbers.  Although
some educators once believed that children memorize their “basic facts” as
conditioned responses, research shows that children do not move from know-
ing nothing about the sums and differences of numbers to having the basic
number combinations memorized.  Instead, they move through a series of
progressively more advanced and abstract methods for working out the answers
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to simple arithmetic problems.  Furthermore, as children get older, they use
the procedures more and more efficiently.4   Recent evidence indicates children
can use such procedures quite quickly.5   Not all children follow the same
path, but all children develop some intermediate and temporary procedures.

Most children continue to use those procedures occasionally and for some
computations.  Recall eventually becomes the predominant method for some
children, but current research methods cannot adequately distinguish between
answers produced by recall and those generated by fast (nonrecall) proce-
dures.  This chapter describes the complex processes by which children learn
to compute with whole numbers.  Because the research on whole numbers
reveals how much can be understood about children’s mathematical develop-
ment through sustained and interdisciplinary inquiry, we give more details in
this chapter than in subsequent chapters.

Word Problems: A Meaningful Context

One of the most meaningful contexts in which young children begin to
develop proficiency with whole numbers is provided by so-called word prob-
lems.  This assertion probably comes as a surprise to many, especially math-
ematics teachers in middle and secondary school whose students have spe-
cial difficulties with such problems.  But extensive research shows that if
children can count, they can begin to use their counting skills to solve simple
word problems.  Furthermore, they can advance those counting skills as they
solve more problems.6   In fact, it is in solving word problems that young
children have opportunities to display their most advanced levels of counting
performance and to build a repertoire of procedures for computation.

Most children entering school can count to solve word problems that
involve adding, subtracting, multiplying, and dividing.7   Their performance
increases if the problems are phrased simply, use small numbers, and are
accompanied by physical counters for the children to use.  The exact proce-
dures children are likely to use have been well documented.  Consider the
following problems:

Sally had 6 toy cars.  She gave 4 to Bill.  How many did she have left?

Sally had 4 toy cars.  How many more does she need to have 6?

Most young children solve the first problem by counting a set of 6,
removing 4, and counting the remaining cars to find the answer.  In contrast,
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they solve the second problem by counting a set of 4, adding in more as they
count “five, six,” and then counting those added in to find the answer.

Children solve these problems by “acting out” the situation—that is, by
modeling it.  They invent a procedure that mirrors the actions or relation-
ships described in the problem.  This simple but powerful approach keeps
procedural fluency closely connected to conceptual understanding and stra-
tegic competence.  Children initially solve only those problems that they
understand, that they can represent or model using physical objects, and that
involve numbers within their counting range.  Although this approach limits
the kinds of problems with which children are successful, it also enables them
to solve a remarkable range of problems, including those that involve multi-
plying and dividing.

Since children intuitively solve word problems by modeling the actions
and relations described in them, it is important to distinguish among the dif-
ferent types of problems that can be represented by adding or subtracting,
and among those represented by multiplying or dividing.  One useful way of
classifying problems is to heed the children’s approach and examine the actions
and relations described.  This examination produces a taxonomy of problem
types distinguished by the solution method children use and provides a frame-
work to explain the relative difficulty of problems.

Four basic classes of addition and subtraction problems can be identi-
fied: problems involving (a) joining, (b) separating, (c) part-part-whole rela-
tions, and (d) comparison relations.  Problems within a class involve the same
type of action or relation, but within each class several distinct types of prob-
lems can be identified depending on which quantity is the unknown (see
Table 6-1).  Students’ procedures for solving the entire array of addition and
subtraction problems and the relative difficulty of the problems have been
well documented.8

For multiplication and division, the simplest kinds of problems are group-
ing situations that involve three components: the number of sets, the num-
ber in each set, and the total number.  For example:

Jose made 4 piles of marbles with 3 marbles in each pile.  How many marbles did
Jose have?

In this problem, the number and size of the sets is known and the total is
unknown.  There are two types of corresponding division situations depend-
ing on whether one must find the number of sets or the number in each set.
For example:
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Problem
Type

Join (Result Unknown) (Change Unknown) (Start Unknown)

Connie had 5 Connie has 5 Connie had some
marbles. Juan gave marbles. How many marbles.  Juan gave
her 8 more marbles. more marbles does her 5 more.  Now she
How many marbles she need to have 13 has 13 marbles.
does Connie have marbles altogether? How many marbles
altogether? did Connie have to

start with?

Separate (Result Unknown) (Change Unknown) (Start Unknown)

Connie had 13 Connie had 13 Connie had some
marbles.  She gave marbles.  She gave marbles.  She gave
5 to Juan.  How some to Juan.  Now 5 to Juan. Now she
many marbles does she has 5 marbles has 8 marbles left.
Connie have left? left. How many How many marbles

marbles did Connie did Connie have
give to Juan? to start with?

Part- (Whole Unknown) (Part Unknown)
Part-
Whole Connie has 5 red Connie has 13

marbles and 8 blue marbles: 5 are red
marbles.  How many and the rest are blue.
marbles does she How many blue
have altogether? marbles does Connie

have?

Compare (Difference (Compare Quantity (Referent
Unknown) Unknown) Unknown)

Connie has 13 Juan has 5 marbles. Connie has 13
marbles.  Juan has 5 Connie has 8 more marbles.  She has 5
marbles.  How many than Juan.  How more marbles than
more marbles does many marbles does Juan.  How many
Connie have than Connie have? marbles does Juan
Juan? have?

SOURCE:  Carpenter, Fennema, Franke, Levi, and Empson, 1999, p. 12. Used by
permission of Heinemann.  All rights reserved.

Table 6-1

Addition and Subtraction Problem Types
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Jose has 12 marbles and puts them into piles of 3.  How many piles does he have?

Jose has 12 marbles and divides them equally into 3 piles.  How many marbles
are in each pile?

Additional types of multiplication and division problems are introduced later
in the curriculum.  These include rate problems, multiplicative comparison
problems, array and area problems, and Cartesian products.9

As with addition and subtraction problems, children initially solve multi-
plication and division problems by modeling directly the action and relations
in the problems.10   For the above multiplication problem with marbles, they
form four piles with three in each and count the total to find the answer.  For
the first division problem, they make groups of the specified size of three and
count the number of groups to find the answer.  For the other problem, they
make the three groups by dealing out (as in cards) and count the number in
one of the groups.  Although adults may recognize both problems as 12 divided
by 3, children initially think of them in terms of the actions or relations
portrayed.  Over time, these direct modeling procedures are replaced by more
efficient methods based on counting, repeated adding or subtracting, or
deriving an answer from a known number combination.11

The observation that children use different methods to solve problems
that describe different situations has important implications.  On the one hand,
directly modeling the action in the problem is a highly sensible approach.
On the other hand, as numbers in problems get larger, it becomes inefficient
to carry out direct modeling procedures that involve counting all of the objects.

Children’s proficiency gradually develops in two significant directions.
One is from having a different solution method for each type of problem to
developing a single general method that can be used for classes of problems
with a similar mathematical structure.  Another direction is toward more effi-
cient calculation procedures.  Direct-modeling procedures evolve into the
more advanced counting procedures described in the next section.  For word
problems, these procedures are essentially abstractions of direct modeling
that continue to reflect the actions and relations in the problems.

The method children might use to solve a class of problems is not neces-
sarily the method traditionally taught.  For example, many children come to
solve the “subtraction” problems described above by counting, adding up, or
thinking of a related addition combination because any of these methods is
easier and more accurate than counting backwards.  The method tradition-
ally presented in textbooks, however, is to solve both of these problems by
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subtracting, which moves students toward the more difficult and error-prone
procedure of counting down.  Ultimately, most children begin to use recall or
a rapid mental procedure to solve these problems, and they come to recog-
nize that the same general method can be used to solve a variety of problems.

Single-Digit Addition

Children come to understand the meaning of addition in the context of
word problems.  As we noted in the previous section, children move from
counting to more general methods to solve different classes of problems.  As
they do, they also develop greater fluency with each specific method.  We
call these specific counting methods procedures.  Although educators have
long recognized that children use a variety of procedures to solve single-digit
addition problems,12  substantial research from all over the world now indi-
cates that children move through a progression of different procedures to
find the sum of single-digit numbers.13

This progression is depicted in Box 6-1.  First, children count out objects
for the first addend, count out objects for the second addend, and count all of
the objects (count all).  This general counting-all procedure then becomes
abbreviated, internalized, and abstracted as children become more experi-
enced with it.  Next, they notice that they do not have to count the objects for
the first addend but can start with the number in the first or the larger addend
and count on the objects in the other addend (count on).  As children count

Box 6-1

Learning Progression for Single-Digit Addition

1 2 3 4 5

1 2 3 4 5

1 2 3

6 7 8
5 6 7 8

Count all Count on

Recall (1 + 1, 2 + 1, etc.)

Thinking strategies (for larger numbers)
Make a ten:  9 + 6 = 10 + 5 = 15

Doubles: 6 + 7 = 6 + 6 + 1 = 12 + 1 = 13

Recall (small totals) Recall (various totals)

6

7 8

5
5 + 3 = ?
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on with objects, they begin to use the counting words themselves as count-
able objects and keep track of how many words have been counted on by
using fingers or auditory patterns.  The counting list has become a represen-
tational tool.  With time, children recompose numbers into other numbers
(4 is recomposed into 3 + 1) and use thinking strategies in which they turn an
addition combination they do not know into one they do know (3 + 4 becomes
3 + 3 + 1).  In the United States, these strategies for derived number combina-
tions often use a so-called double (2 + 2, 3 + 3, etc.).  These doubles are
learned very quickly.

As Box 6-1 shows, throughout this learning progression, specific sums
move into the category of being rapidly recalled rather than solved in one of
the other ways described above.  Children vary in the sums they first recall
readily, though doubles, adding one (the sum is the next counting word), and
small totals are the most readily recalled.  Several procedures for single-digit
addition typically coexist for several years; they are used for different numbers
and in different problem situations.  Experience with figuring out the answer
to addition problems provides the basis both for understanding what it means
to say “5 + 3 = 8” and for eventually recalling that sum without the use of any
conscious strategy.

Children in many countries often follow this progression of procedures, a
natural progression of embedding and abbreviating.  Some of these proce-
dures can be taught, which accelerates their use,14  although direct teaching
of these strategies must be done conceptually rather than simply by using
imitation and repetition.15   In some countries, children learn a general proce-
dure known as “make a 10” (see Box 6-2).16   In this procedure the solver
makes a 10 out of one addend by taking a number from the other addend.
Educators in some countries that use this approach believe this first instance
of regrouping by making a 10 provides a crucial foundation for later multidigit
arithmetic.  In some Asian countries this procedure is presumably facilitated
by the number words.17   It has also been taught in some European countries
in which the number names are more similar to those of English, suggesting
that the procedure can be used with a variety of number-naming systems.
The procedure is now beginning to appear in U.S. textbooks,18  although so
little space may be devoted to it that some children may not have adequate
time and opportunity to understand and learn it well.

There is notable variation in the procedures children use to solve simple
addition problems.19   Confronted with that variation, teachers can take vari-
ous steps to support children’s movement toward more advanced procedures.
One technique is to talk about slightly more advanced procedures and why
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Box 6-2

Make a Ten: 8 + 6 = ?

Solution Student's thinking
Ten-frame

10 + ___

"Two are missing to make 10."

10 + 4 = 14

"Use 2 from 6 to complete 10.  Four are left 
over. That makes 14."

Student drawing
8 + 6

10 + 4

"Six gives 2 to the 8 to make 10.  Four left 
(in the 6) makes 10 + 4, which is 14."

Numerical solution

8 + 6 = 14
2+4

"Six gives 2 to the 8 to make 10.  Four left 
(in the 6) makes 10 + 4, which is 14."

they work.20   The teacher can stimulate class discussion about the proce-
dures that various students are using.  Students can be given opportunities to
present their procedures and discuss them.  Others can then be encouraged
to try the procedure.  Drawings or concrete materials can be used to reveal
how the procedures work.  The advantages and disadvantages of different
procedures can also be examined.  For a particular procedure, problems can
be created for which it might work well or for which it is inefficient.

Other techniques that encourage students to use more efficient proce-
dures are using large numbers in problems so that inefficient counting proce-
dures cannot easily be used and hiding one of the sets to stimulate a new way
of thinking about the problem.  Intervention studies indicate that teaching
counting-on procedures in a conceptual way makes all single-digit sums ac-
cessible to U.S. first graders, including children who are learning disabled
and those who do not speak English as their first language.21   Providing sup-
port for children to improve their own procedures does not mean, however,
that every child is taught to use all the procedures that other children develop.
Nor does it mean that the teacher needs to provide every child in a class with

Copyright © National Academy of Sciences. All rights reserved.



190 ADDING IT UP

support and justification for different procedures.  Rather, the research pro-
vides evidence that, at any one time, most children use a small number of
procedures and that teachers can learn to identify them and help children
learn procedures that are conceptually more efficient (such as counting on
from the larger addend rather than counting all).22

Mathematical proficiency with respect to single-digit addition encom-
passes not only the fluent performance of the operation but also conceptual
understanding and the ability to identify and accurately represent situations
in which addition is required.  Providing word problems as contexts for add-
ing and discussing the advantages and disadvantages of different addition
procedures are ways of facilitating students’ adaptive reasoning and improv-
ing their understanding of addition processes.

Single-Digit Subtraction

Subtraction follows a progression that generally parallels that for addition
(see Box 6-3).  Some U.S. children also invent counting-down methods that
model the taking away of numbers by counting back from the total.  But
counting down and counting backward are difficult for many children.23

Box 6-3

Learning Progression for Single-Digit Subtraction

1 2 3 4 5

1 2 3 4 5 1 2 3

6 7 8

Take away Count up to

Recall (2 – 1, 3 – 1, etc.)

Thinking strategies (for larger numbers)
Up over 10: 15 – 9 as

9 + 1 (to 10) + 5 (to 15), so 6
Down over 10: 15 – 9 as

5 (from 15 down to 10) + 1 (down to 9) = 6
Doubles: 13 – 7 as

7 + 7 = 14, so 6 because 13 is 1 less than 14

Recall (small numbers) a) as subtractions
b) from related additions

(5 + ? = 8 for 8 – 5)

6

7 8

5

3 more from
5 up to 8.
So 3 left.

8

7 6 5
4

3 left
7

6 5 4
3

3 left8

Count down

or

8 – 5 = ?
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A considerable number of children invent counting-up procedures for
situations in which an unknown quantity is added to a known quantity.24

Many of these children later count up in taking-away subtraction situations
(13 – 8 = ? becomes 8 + ? = 13).  When counting up is not introduced, many
children may not invent it until the second or third grade, if at all.  Interven-
tion studies with U.S. first graders that helped them see subtraction situa-
tions as taking away the first x objects enabled them to learn and understand
counting-up-to procedures for subtraction.  Their subtraction accuracy became
as high as that for addition.25

Experiences that focus on part-part-whole relations have also been shown
to help students develop more efficient thinking strategies, especially for
subtraction.26   Students examine a join or separate situation and identify which
number represents the whole quantity and which numbers represent the parts.
These experiences help students see how addition and subtraction are related
and help them recognize when to add and when to subtract.  For students in
grades K to 2, learning to see the part-whole relations in addition and subtrac-
tion situations is one of their most important accomplishments in arithmetic.27

Examining the relationships between addition and subtraction and seeing
subtraction as involving a known and an unknown addend are examples of
adaptive reasoning.  By providing experiences for young students to develop
adaptive reasoning in addition and subtraction situations, teachers are also
anticipating algebra as students begin to appreciate the inverse relationships
between the two operations.28

Single-Digit Multiplication

Much less research is available on single-digit multiplication and divi-
sion than on single-digit addition and subtraction.  U.S. children progress
through a sequence of multiplication procedures that are somewhat similar to
those for addition.29   They make equal groups and count them all.  They
learn skip-count lists for different multipliers (e.g., they count 4, 8, 12, 16,
20, . . . to multiply by four).  They then count on and count down these lists
using their fingers to keep track of different products.  They invent thinking
strategies in which they derive related products from products they know.

As with addition and subtraction, children invent many of the procedures
they use for multiplication.  They find patterns and use skip counting (e.g.,
multiplying 4 × 3 by counting “3, 6, 9, 12”).  Finding and using patterns and
other thinking strategies greatly simplifies the task of learning multiplication
tables (see Box 6-4 for some examples).30   Moreover, finding and describing

For students
in grades K
to 2, learning
to see the
part-whole
relations in
addition and
subtraction
situations
is one of
their most
important
accomplish-
ments in
arithmetic.
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Box 6-4

Thinking Strategies for Single-Digit Multiplication

In single-digit arithmetic, there are 100 multiplication combinations that students
must learn.  Commutativity reduces that number by about half.  Multiplication by
0 and by 1 may quickly be deduced from the meaning of multiplication.  Multipli-
cation by 2 consists of the “doubles” from addition.  Single-digit multiplication by
9 is simplified by a pattern: in the product, the sum of the digits is 9.  (For example,
9 × 7 = 63 and 6 + 3 = 9.)  Multiplication by 5 may also be deduced through patterns
or by first multiplying by 10 and then dividing by 2, since 5 is half of 10.

The remaining 15 multiplication combinations (and their commutative counter-
parts) may be computed by skip counting or by building on known combinations.
For example, 3 × 6 must be 6 more than 2 × 6, which is 12.  So 3 × 6 is 18.  Similarly,
4 × 7 must be twice 2 × 7, which is 14.  So 4 × 7 is 28.  (Note that these strategies
require proficiency with addition.)  To compute multiples of 6, one can build on the
multiples of 5.  So, for example, 6 × 8 must be 8 more than 5 × 8, which is 40.  So
6 × 8 is 48.  If students are comfortable with such strategies for multiplication by 3,
4, and 6, only three multiplication combinations remain: 7 × 7, 7 × 8, and 8 × 8.
These can be derived from known combinations in many creative ways.

patterns are a hallmark of mathematics.  Thus, treating multiplication learn-
ing as pattern finding both simplifies the task and uses a core mathematical
idea.

After children identify patterns, they still need much experience to pro-
duce skip-count lists and individual products rapidly.  Little is known about
how children acquire this fluency or what experiences might be of most help.
A good deal of research remains to be done, in the United States and in other
countries, to understand more about this process.

Single-Digit Division

Division arises from the two splitting situations described above.  A col-
lection is split into groups of a specified size or into a specified number of
groups.  Just as subtraction can be thought of using a part-part-whole relation,
division can be thought of as splitting a number into two factors.  Hence,
divisions can also be approached as finding a missing factor in multiplication.
For example, 72 ÷ 9 = ? can be thought of as 9 × ? = 72.  But there is little
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research concerning how best to introduce and use this relationship, or whether
it is helpful to learn a division combination at the same time as the corre-
sponding multiplication combination.  Further, there is little research about
how to help children learn and use easily all of the different symbols for divi-
sion, such as 15

3
, 15 ÷ 3, and )3 15.

Practicing Single-Digit Calculations

Practicing single-digit calculations is essential for developing fluency with
them.  This practice can occur in many different contexts, including solving
word problems.31   Drill alone does not develop mastery of single-digit combi-
nations.32   Practice that follows substantial initial experiences that support
understanding and emphasize “thinking strategies” has been shown to
improve student achievement with single-digit calculations.33   This approach
allows computation and understanding to develop together and facilitate each
other.  Explaining how procedures work and examining their benefits, as part
of instruction, support retention and yield higher levels of performance.34   In
this way, computation practice remains integrated with the other strands of
proficiency such as strategic competence and adaptive reasoning.

It is helpful for some practice to be targeted at recent learning.  After
students discuss a new procedure, they can benefit from practicing it.  For
example, if they have just discussed the make-a-10 procedure (see Box 6-2),
solving problems involving 8 or 9 in which the procedure can easily be used
provides beneficial practice.  It also is helpful for some practice to be cumula-
tive, occurring well after initial learning and reviewing the more advanced
procedures that have been learned.

Many U.S. students have had the experience of taking a timed test that
might be a page of mixed addition, subtraction, multiplication, and division
problems.  This scattershot form of practice is, in our opinion, rarely the best
use of practice time.  Early in learning it can be discouraging for students
who have learned only primitive, inefficient procedures.  The experience can
adversely affect students’ disposition toward mathematics, especially if the
tests are used to compare their performance.35   If appropriately delayed, timed
tests can benefit some students, but targeted forms of practice, with particular
combinations that have yet to be mastered or on which efficient procedures
can be used, are usually more effective.36

Practicing
single-digit
calculations
is essential
for
developing
fluency with
them.
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Summary of Findings on Learning Single-Digit
Arithmetic

For addition and subtraction, there is a well-documented progression of
procedures used worldwide37  by many children that stems from the sequential
nature of the list of number words.  This list is first used as a counting tool;
then it becomes a representational tool in which the number words them-
selves are the objects that are counted.38   Counting becomes abbreviated and
rapid, and students begin to develop procedures that take advantage of prop-
erties of arithmetic to simplify computation.  During this progression, indi-
vidual children use a range of different procedures on different problems and
even on the same problem encountered at different times.39   Even adults
have been found to use a range of different procedures for simple addition
problems.40   Further, it takes an extended period of time before new and
better strategies replace previously used strategies.41   Learning-disabled chil-
dren and others having difficulty with mathematics do not use procedures
that differ from this progression.  They are just slower than others in moving
through it.42

Instruction can help students progress.43   Counting on is accessible to
first graders; it makes possible the rapid and accurate addition of all single-
digit numbers.  Single-digit subtraction is usually more difficult than addition
for U.S. children.  If children understand the relationship between addition
and subtraction, perhaps by thinking of the problem in terms of part-part-
whole, then they recognize that counting up can be used to solve subtraction
problems.  This recognition makes subtraction more accessible.44

The procedures of counting on for addition and counting up for subtrac-
tion can be learned with relative ease.  Multiplication and division are some-
what more difficult.  Even adults might not have quick ways of reconstructing
the answers to problems like 6 × 8 = ? or 72

8
 = ? if they have forgotten the

answers.  Learning these combinations seems to require much specific pattern-
based knowledge that needs to be orchestrated into accessible and rapid-
enough products and quotients.  As with addition and subtraction, children
derive some multiplication and division combinations from others; for example,
they recall that 6 × 6 = 36 and use that combination to conclude that 6 × 7 = 42.
Research into ways to support such pattern finding, along with the necessary
follow-up thinking and practice, is needed if all U.S. children are to acquire
higher levels of proficiency in single-digit arithmetic.

Acquiring proficiency with single-digit computations involves much more
than rote memorization.  This domain of number demonstrates how the dif-
ferent strands of proficiency contribute to each other.  At this early point in
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development, many of the linkages among strands result from children’s
natural inclination to make sense of things and to engage in actions that they
understand.  Children begin with conceptual understanding of number and
the meanings of the operations.  They develop increasingly sophisticated
representations of the operations such as counting-on or counting-up proce-
dures as they gain greater fluency.  They also lean heavily on reasoning to use
known answers such as doubles to generate unknown answers.  Even in the
early grades, students choose adaptively among different procedures and
methods depending on the numbers involved or the context.45   As long as the
focus in the classroom is on sense making, they rarely make nonsensical errors,
such as adding to find the answer when they should subtract.  Proficiency
comes from making progress within each strand and building connections
among the strands.  A productive disposition is generated by and supports
this kind of learning because students recognize their competence at making
sense of quantitative situations and solving arithmetic problems.

Multidigit Whole Number Calculations

Step-by-step procedures for adding, subtracting, multiplying, or dividing
numbers are called algorithms.  For example, the first step in one algorithm
for multiplying a three-digit number by a two-digit number is to write the
three-digit number above the two-digit number and to begin by multiplying
the one’s digit in the top number by the one’s digit in the bottom number
(see Box 6-5).

In the past, algorithms different from those taught today for addition,
subtraction, multiplication, and division have been taught in U.S. schools.
Also, algorithms different from those taught in the United States today are
currently being taught in other countries.46   Each algorithm has advantages

Box 6-5

Beginning a multiplication algorithm

752
× 23

6
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and disadvantages.  Therefore, it is important to think about which algorithms
are taught and the reasons for teaching them.

Learning to use algorithms for computation with multidigit numbers is
an important part of developing proficiency with numbers.  Algorithms are
procedures that can be executed in the same way to solve a variety of prob-
lems arising from different situations and involving different numbers.  This
feature has three important implications.  First, it means that algorithms are
useful tools—different procedures do not need to be invented for each prob-
lem.  Second, algorithms illustrate a significant feature of mathematics: The
structure of problems can be abstracted from their immediate context and
compared to see whether different-looking problems can be solved in similar
ways.  Finally, the process of developing fluency with arithmetic algorithms
in elementary school can contribute to progress in developing the other strands
of proficiency if time is spent examining why algorithms work and comparing
their advantages and disadvantages.  Such analyses can boost conceptual under-
standing by revealing much about the structure of the number system itself
and can facilitate understanding of place-value representations.

Research findings about learning algorithms for whole numbers can be
summarized with seven important observations.  First, the linkages among
the strands of mathematical proficiency that are possible when children
develop proficiency with single-digit arithmetic can be continued with
multidigit arithmetic.  For example, there can be a close connection between
understanding and fluency.  Conceptual knowledge that comes with under-
standing is important for the development of procedural fluency, while fluent
procedural knowledge supports the development of further understanding
and learning.   When students fail to grasp the concepts that underlie proce-
dures or cannot connect the concepts to the procedures, they frequently
generate flawed procedures that result in systematic patterns of errors.47

These so-called buggy algorithms are signs that the strands are not well con-
nected.48   When the initial computational procedures that students use to
solve multidigit problems reflect their understanding of numbers, understand-
ing and fluency develop together.

A second observation is that understanding and fluency are related.  For
multidigit addition and subtraction, given conventional instruction that
emphasizes practicing procedures, a substantial percentage of children gain
understanding of multidigit concepts before using a correct procedure, but
another substantial minority do the opposite.49   In contrast, instructional pro-
grams that emphasize understanding algorithms before using them have been
shown to lead to increases in both conceptual and procedural knowledge.50
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So there is some evidence that understanding is the basis for developing
procedural fluency.51

A third observation is that proficiency with multidigit computation is more
heavily influenced by instruction than single-digit computation is.  Many
features of multidigit procedures (e.g., the base-10 elements and how they
are represented by place-value notation) are not part of children’s everyday
experience and need to be learned in the classroom.  In fact, many students
are likely to need help learning efficient forms of multidigit procedures.  This
means that students in different classrooms and receiving different instruction
might follow different learning progressions use different procedures.52   For
single-digit addition and subtraction, the same learning progression occurs
for many children in many countries regardless of the nature and extent of
instruction.53   But multidigit procedures, even those for addition and sub-
traction, depend much more on what is taught.

A fourth observation is that children can and do devise or invent algo-
rithms for carrying out multidigit computations.54   Opportunities to construct
their own procedures provide students with opportunities to make connec-
tions between the strands of proficiency.  Procedural fluency is built directly
on their understanding.  The invention itself is a kind of problem solving,
and they must use reasoning to justify their invented procedure.  Students
who have invented their own correct procedures also approach mathematics
with confidence rather than fear and hesitation.55   Students invent many dif-
ferent computational procedures for solving problems with large numbers.
For addition, they eventually develop a procedure that is consistent with the
thinking that is used with standard algorithms.  That thinking enables them
to make sense of the algorithm as a record on paper of what they have already
been thinking.  For subtraction, many students can develop adding-up pro-
cedures and, if using concrete materials like base-10 blocks, can also develop
ways of thinking that parallel algorithms usually taught today.56   Some students
need help to develop efficient algorithms, however, especially for multiplica-
tion and division.  Consequently, for these students the process of learning
algorithms involves listening to someone else explain an algorithm and trying
it out, all the while trying to make sense of it.  Research suggests that students
are capable of listening to their peers and to the teacher and of making sense
of an algorithm if it is explained and if the students have diagrams or concrete
materials that support their understanding of the quantities involved.57

Fifth, research has shown that students can learn well from a variety of
different instructional approaches, including those that use physical materials
to represent hundreds, tens, and ones, those that emphasize special counting
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activities (e.g., count by tens beginning with any number), and those that
focus on developing mental computation methods.58   Although the data do
not point to a single preferred instructional approach, they do suggest that
effective approaches share some key features: The multidigit procedures that
students use are easily understood; students are encouraged to use algorithms
that they understand; instructional supports (classroom discussions, physical
materials, etc.) are available to focus students’ attention on the base-10 struc-
ture of the number system and on how that structure is used in the algorithm;
and students are helped to progress to using reasonably efficient but still com-
prehensible algorithms.59

Sixth, research on symbolic learning argues that, to be helpful,
manipulatives or other physical models used in teaching must be represented
by a learner both as the objects that they are and as symbols that stand for
something else.60   The physical characteristics of these materials can be initially
distracting to children, and it takes time for them to develop mathematical
meaning for any kind of physical model and to use it effectively.  These find-
ings suggest that sustained experience with any physical models that students
are expected to use may be more effective than limited experience with a
variety of different models.61

In view of the attention given to the use of concrete models in U.S. school
mathematics classes, we offer a special note regarding their effective use in
multidigit arithmetic.  Research indicates that students’ experiences using
physical models to represent hundreds, tens, and ones can be effective if the
materials help them think about how to combine quantities and, eventually,
how these processes connect with written procedures.  The models, how-
ever, are not automatically meaningful for students; the meaning must be
constructed as they work with the materials.  Given time to develop meaning
for a model and connect it with the written procedure, students have shown
high levels of performance using the written procedure and the ability to give
good explanations for how they got their answers.62   In order to support under-
standing, however, the physical models need to show tens to be collections of
ten ones and to show hundreds to be simultaneously 10 tens and 100 ones.
For example, base-10 blocks have that quality, but chips all of the same size
but with different colors for hundreds, tens, and ones do not.

A seventh and final observation is that the English number words and
the Hindu-Arabic base-10 place-value system for writing numbers compli-
cate the teaching and learning of multidigit algorithms in much the same
way, as discussed in Chapter 5, that they complicate the learning of early
number concepts.63   Closely related to the difficulties posed by the irregu-
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larities with number words are difficulties posed by the complexity of the
system for writing numbers.  As we said in chapter 3, the base-10 place-value
system is very efficient.  It allows one to write very large numbers using only
10 symbols, the digits 0 through 9.  The same digit has a different meaning
depending on its place in the numeral.  Although this system is familiar and
seems obvious to adults, its intricacies are not so obvious to children.  These
intricacies are important because research has shown that it is difficult to
develop procedural fluency with multidigit arithmetic without an understand-
ing of the base-10 system.64   If such understanding is missing, students make
many different errors in multidigit computations.65

This conclusion does not imply that students must master place value
before they can begin computing with multidigit numbers.  In fact, the evi-
dence shows that students can develop an understanding of both the base-10
system and computation procedures when they have opportunities to explore
how and why the procedures work.66   That should not be surprising; it simply
confirms the thesis of this report and the claim we made near the beginning
of this chapter.  Proficiency develops as the strands connect and interact.

The six observations can be illustrated and supported by examining briefly
each of the arithmetic operations.  As is the case for single-digit operations,
research provides a more complete picture for addition and subtraction than
for multiplication and division.

Addition Algorithms

The progression followed by students who construct their own proce-
dures is similar in some ways to the progression that can be used to help
students learn a standard algorithm with understanding.  To illustrate the
nature of these progressions, it is useful to examine some specific procedures
in detail.

The episode in Box 6-6 from a third-grade class illustrates both how
physical materials can support the development of thinking strategies about
multidigit algorithms and one type of procedure commonly invented by chil-
dren.67   The episode comes from a discussion of students’ solutions to a word
problem involving the sum 54 + 48.

The episode suggests that students’ invented procedures can be con-
structed through progressive abstraction of their modeling strategies with
blocks.  First, the objects in the problem were represented directly with the
blocks.  Then, the quantity representing the first set was abstracted, and only
the blocks representing the second set were counted.  Finally, the counting
words were themselves counted by keeping track of the counts on fingers.
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Box 6-6

A Third-Grade Class Finds 54 + 48

The students had worked on the problem at their desks for about 15 minutes and
were sharing their procedures with the class.  The teacher, Ms. G., called everyone
over to look at Ellen’s solution strategy.

Ellen: [Makes 54 and 48 with tens and ones blocks.]  I knew this was 54, so
I went 64, 74, 84, 94, . . . . [She moves one 10 block for each count.
Then she counts the single cubes, moving a cube with each count.]
Ninety-five, 96, . . . , 102.

Ms. G: Now class, what question am I going to ask her?  Norman?

Norman: You didn’t use the 54.  Did you have to make it?

Ms. G: Good, Norman, that’s just what I was going to ask her.  Ellen, did
you need to make that 54?

Ellen: No.

Ms. G: [Pulls the 54 away and covers it with her hand.]  OK, now show me
how you can solve the problem without the 54.

Ellen: Sixty-four, 74, . . . .  [She repeats the above strategy, counting on
without the 54.]

Ms. G: OK, now you told me that you could do this without us moving to
your desk.  How would you have done that?

Ellen: OK, I just put 54 in my head, and then I go 48 more.  I go 54 [slight
pause], 64, 74, 84, 94.  [She puts up a finger with each count to keep
track of the four tens in 48.  At this point she has four fingers up.
She puts down her fingers and puts them up again with each count
as she continues counting by ones.]  Ninety-five, 96, 97, . . . , 102.

SOURCE: Adapted from Carpenter, Fennema, and Franke, 1996, p. 11.
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Ellen’s final solution was for all intents and purposes a verbal description of
what she did with the blocks.  But it was more than that.  It represented a
solution that could actually be carried out without the blocks as explicit refer-
ents.  Other invented procedures share some of the same features.

Boxes 6-7 through 6-10 illustrate procedures for multidigit addition and
subtraction.  Method C in Box 6-7 captures, in written form, the thinking
strategies that many students use as they continue constructing procedures
for adding multidigit numbers.68   They usually begin by combining the larger
units first and then combining the subtotals to find the sum.  They invent a
variety of mental and written techniques to keep track of the subtotals until
they can combine them.  The important observation is that students who
construct these methods understand that ones are combined with ones, tens
with tens, and hundreds with hundreds, and they understand that 10 of each
unit compose one unit of the next higher magnitude (e.g., 10 tens make 100).
Fundamental properties of the number system, like the associative and dis-
tributive properties, are used in decomposing and recombining numbers.  In
other words, the procedures children construct on their own build directly on
the foundational number concepts, and these underlying concepts often are
quite visible when one examines the steps in the procedures.

Standard algorithms, in contrast to children’s constructed algorithms, are
quite far removed from their conceptual underpinnings.  They have evolved
over centuries for efficiency and compactness.  They can be executed quickly,
but they can be difficult to learn with understanding.

Method A in Box 6-7 is an addition algorithm currently appearing in many
U.S. textbooks.  Learning this procedure with understanding poses three dif-
ficulties for many students.  First, it moves from right to left, in contrast to
reading and in contrast to most methods invented by children.  Many chil-
dren initially, and some children for a long time, have difficulty remembering
to start on the right and move to the left.69   Second, for some children, put-
ting the little 1’s above the top number changes the problem (it actually does
change the problem, but that does not change the answer).  This change can
be a source of confusion.  Third, adding the numbers in a given column is
difficult with this method.  You must add the 1 to the top number, remember
the sum without writing it down, and add that remembered number you can-
not see to the bottom number while you ignore the number you can see in
the top row.  If children instead add the two numbers they see (a much easier
method), many of them then forget to add the extra 10 (or extra hundred).

The
procedures
children
construct on
their own
build directly
on the
foundational
number
concepts,
and these
underlying
concepts
often are
quite visible
when one
examines the
steps in the
procedures.

Copyright © National Academy of Sciences. All rights reserved.



202 ADDING IT UP

Box 6-7

Three Methods for Multidigit Addition

A Common U.S. Algorithm

Accessible Generalizable Methods

Method A

568
+ 876
1444

1 1

 (a) right to left
 

(b) add, carry to left

 (c) add carry to top number, remember new number while adding it 
to bottom number

Method B

568
+ 876

4
1

568
+ 876

44
1 1

568
+ 876

1444
1 1

(a) right to left

(b) carry goes below in answer space, 
keeping total together

(c) add 2 numbers you see, then 
increase that number by 1 
for previous carry

Method C

568
+ 876
1300

130
14

1444
(a) can be done in either direction

(b) add each kind of unit first, 
then add those totals
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Method B is a variation of Method A that addresses two of these three prob-
lems (it also moves from right to left).  Method B is taught in China and has
been invented by students in the United States.70   In this method the new 1
or regrouped 10 (or new hundred) is recorded on the line separating the prob-
lem from the answer.  This arrangement makes it easier to see the 14 that
generated the regrouped 10 than when the 1 is written above the problem.
Because the new 1 sits below in the answer space, it does not change the top
number.  Adding is easy: You just add the two numbers you see and then
increase that total by one.

Methods A and B both require that children understand what to do when
they get 10 or more in a given column.  Because they can only write 9 or less
of a given grouping in a column, they must make a group of 10 ones (or tens
or hundreds, etc.) and give that group to the next left place.  This conceptual
trouble spot for students is called carrying or regrouping or trading.  Method C,
reflecting more closely many students’ invented procedures, reduces the prob-
lem by writing the total for each kind of unit on a new line.  The carrying-
regrouping-trading is done as part of the adding of each kind of unit.  Also,
Method C can be done in either direction (Box 6-7 shows the left-to-right
version).  Because you write out the whole value of each partial sum (e.g., 500
+ 800 = 1300), this method also facilitates children’s thinking about and
explaining how and what they are adding.  Accessibility studies indicate that
young children can solve multidigit addition problems using methods like B
and C and some other methods also.71

Drawings like that in Box 6-8 can be used to support children’s under-
standing of the quantities in the problem and how those quantities are grouped
to make new tens, hundreds, or thousands.  Such drawings can be used with
any of the three methods (or with other methods).  Whether drawings or objects
are used to support understanding of an addition method, it is vital that they
be linked to the numbers in the algorithm until the student can perform it
with understanding.  If the drawings (or physical models like base-10 blocks)
are used simply to calculate answers, they lose their ability to help connect
understanding to procedures.  The benefits of using the materials come from
seeing that the actions performed on the drawings or objects to get answers
are the very actions that are used in carrying out the algorithm.  Learning the
algorithm then becomes a matter of students recording with numbers on paper
the actions and thinking they did with the drawings or objects.  This linking
process takes time.  Asking students to explain their procedure as if the
numbers were the drawings or physical models can facilitate the linking
process.
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Box 6-8

A Model for Multidigit Addition: 568 + 876 = ?

Stage 1:  Sustained linking of quantities to written algorithm to quantity meanings.

Stage 2:  Only do algorithm but occasionally explain using quantity words.

1 thousand 1 hundred 1 ten

 568

+ 876

Subtraction Algorithms

Students can construct multidigit subtraction procedures, though often
these procedures are less similar to standard algorithms than is the case for
addition.  Still, as with addition, research has shown that students can learn a
subtraction algorithm meaningfully if provided with appropriate experiences.
In most cases, subtraction algorithms require more time and support than
addition algorithms, but students can learn to execute them accurately and to
explain why they work.72

Two subtraction procedures are shown in Box 6-9.  Method A is an algo-
rithm commonly taught in the United States.  It moves from right to left and
alternates between the two major subtraction steps.  Step 1 involves regroup-
ing (or borrowing or trading) to get 10 or more in the top position.  Step 2 is
subtracting after the top number has been fixed.  Alternating between these
two steps presents three kinds of potential difficulties for students.  The first
is learning this alternation and the reasons for it.  The second is remembering
to alternate the steps.  The third is that the alternation renders students sus-
ceptible to a very common subtracting error: subtracting a smaller top digit
from a larger bottom digit.  In the example, after subtracting bottom digit in
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Box 6-9

Three Methods for Multidigit Subtraction

A Common U.S. Algorithm

Method A

1444
– 568

876

3
1

13

(a) right to left

(b) alternate ungrouping and subtracting

Method B Method C

Do all ungrouping, in any
order, until every top number
is larger than the bottom
number.  Then subtract each
kind of multiunit, in any
order.

1444
– 568

876

13 1414
13

1444
– 568

876

13 143
13

left-to-right right-to-left
ungrouping ungrouping

Accessible Generalizable Methods

the ones place to get 6, a student moves to the left and sees 3 on the top and
6 on the bottom.  The answer 3 is generated spontaneously as a subtraction
answer, given 6 and 3.  It takes extra effort to suppress this answer and think
about the direction in which one is subtracting.

Methods B and C are slight variations of Method A in which Step 1
(regrouping) is done for all columns first.  For each column in either direc-
tion, the student asks the regrouping (borrowing) question, “Can I subtract
in this column?  Is the top digit as big as or bigger than the bottom digit?”
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The goal is to fix the top number so that every top digit is larger than the
corresponding bottom digit.  The second major step is then to subtract in
every column.  This subtraction can also be done in any direction.  Methods
B and C clarify that the top number is a single number that must be rewritten
in a form equivalent in value but ready for subtraction in every column.  This
rewriting can reduce the otherwise frequent “top from bottom” error.73

The drawing in Box 6-10 shows how students can make a quantity draw-
ing to show both aspects of multidigit subtracting.  Making such drawings
initially can help students develop their own procedures or help them make
sense of an algorithm presented by someone else.  Again, such drawings should,
when used, be linked to a numerical method and not just used to calculate an
answer.

Multiplication Algorithms

There is much less research on children’s understanding of multidigit
multiplication (and division) than of addition and subtraction.  Sample con-
ceptual teaching lessons have been published for multiplication, and some
alternative methods of instruction have been explored.74   A preliminary learn-
ing progression of multidigit procedures that fosters children’s invention of

Box 6-10

Model for Multidigit Subtraction: 1444 – 568 = ?

– 568

1444
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algorithms has also been reported.75   The data are still insufficient, however,
to permit firm conclusions about students’ learning progressions in multidigit
multiplication.

Nevertheless, it is useful to examine algorithms students are expected to
learn and to consider alternatives that might facilitate understanding.  Stan-
dard multiplication and division algorithms used in the United States are com-
plex procedures in which multiplying alternates with adding or subtracting
(see Box 6-11).  In these algorithms the meaning and scaffolding provided by
substeps have been sacrificed for efficiency.  The algorithms use alignment
of place value to keep the steps organized without requiring the student to
understand what is actually happening with the ones, tens, hundreds, and so
on.  Algorithms that might be more accessible to students, and still generaliz-
able and fairly efficient, are presented and discussed below.

Arrays are powerful representations of multiplication.  An array or area
model is shown on the left in Box 6-12.  Such a model provides initial support
for the crucial understanding of the effects of multiplying by 1, 10, and 100
(shown by arrows and products around the array).  It also shows clearly how
all of the tens and ones digits in 46 and 68 are multiplied by each other and
then added.  The sizes of the resulting rectangles indicate the sizes of these
various products (sometimes referred to as partial products).  The abbreviated
array model (shown on the right in Box 6-12) can be drawn later when the
students clearly understand the effects of multiplying by tens and by ones.
This abbreviated model summarizes the steps in multidigit multiplication,
and the separation into tens and ones facilitates finding the partial products.

Box 6-11

A Common U.S. Algorithm for Multidigit Multiplication

46
×  68

368
276
3128

1

1

4
3
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Box 6-12

Models for Multidigit Multiplication: 46 × 68

Array Model

60

+

8

40 + 6
10 × 10

= 100 10 × 1
= 10

1 × 1
= 1

1 × 10 = 10

Abbreviated Array Model

60

+

8

40 + 6

2400

320 48

360

The multiplication algorithm shown in Box 6-13 is an expanded form in
which all possible products are written.  As students come to understand each
aspect of multiplication, some of the written supports can be dropped, result-
ing in a streamlined version that is a simple expanded form of typical U.S.
algorithms.  Although this algorithm has been proposed as an alternative for
some time, and variations of it have been used in some textbooks,76  algo-
rithms currently used in the United States are substantially different.  They
typically start at the right and multiply ones first.  The expanded algorithm
begins at the left, as students are naturally inclined to do.  That also has the
advantage that the first product written is the largest, which permits all of the
smaller products to be aligned easily under it in their correct places.  Writing
the factors beside each product emphasizes what one is actually doing in each
step and permits an easy check.  In this variation the complex alternation of
multiplying and adding is not necessary.  Students who understand and wish
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Box 6-13

Expanded Algorithm for Multidigit Multiplication

Note:  Steps can be dropped when they are no longer needed.

46 = 40 + 6
×  68 = 60 + 8

2400 = 60 ×  40
360 = 60 ×  6
320 = 8 × 40

48 = 8 ×  6

3128
1 1

to drop steps in this algorithm can do so readily, with a result looking some-
thing like the common algorithm in Box 6-11, except that it has, in this case,
four instead of two partial products to be added.  These four can even be
collapsed into two for those students who wish to do so.  Therefore, the
expanded model permits students to function at their own level of compe-
tence and is likely to help them understand what they are doing.  The key
point is that regardless of the algorithm that students use, they should be
able to explain what they are doing and why it works.

Multiplying by a three-digit number is an extension of the two-digit ver-
sion that requires the development of new understanding about multiplying
by hundreds.  The expanded algorithm for these larger numbers is relatively
easy to carry out because the necessary steps are visible, although the num-
ber of partial products more than doubles.  Given the accessibility of calcula-
tors, it might not be wise for students to spend a great deal of valuable school
learning time becoming efficient at multiplication with three-digit or larger
numbers.  There is no research on how much pencil-and-paper computation
is necessary or the impact of experiences with calculating with larger numbers
on other mathematical understanding.  Having some experience working with
larger numbers, however, seems essential if students are to extend their con-
ceptual understanding of multiplication and develop their ability to estimate
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the results of calculating with large numbers.  Both of these skills are impor-
tant even when children use calculators.

At present, many students have not achieved procedural fluency with
single-digit multiplication when they begin work on multidigit multiplica-
tion.  A proper balance in instruction among the strands of mathematical pro-
ficiency would serve to diminish the number of such students.  Until that
balance is achieved, however, such students need help in working simulta-
neously on a multiplication algorithm and obtaining fluency with single-digit
multiplication.  Using a table to look up some single-digit products can permit
students to participate in classwork on algorithms while perhaps motivating
as well as supporting their continued learning of single-digit arithmetic.

Division Algorithms

As we indicated earlier, relatively little research is available to shed light
on how students think about multidigit division or what learning activities
might be of most help to them.  Sample teaching lessons have been proposed,
and preliminary results suggest that students can construct their own proce-
dures that, over time, approximate standard algorithms.77   As with multipli-
cation, however, the best that educators can do at this point is to examine
some alternative algorithms that are likely to support students’ efforts to
develop proficiency with multidigit division.

Common U.S. division algorithms have two aspects that can create diffi-
culties for students.  First, the algorithms require students to determine exactly
the maximum copies of the divisor that can be taken from successive parts of
the dividend.  For example, in the problem 3129 ÷ 46 = ?, one must first
determine exactly how many 46s can be subtracted from 312.  That determi-
nation is not always easy.  Second, the algorithms creates no sense of the size
of the answers one is writing, in part because one is always multiplying by
what looks like a single-digit number written above the dividend.  In the
example in Box 6-14, to begin the division process, the student just writes a 6
above the line as the first digit in the quotient.  There is no sense of 60,
because the student will be multiplying 46 by 6.

The accessible division method shown in Box 6-15 facilitates safe under-
estimating.  Rather than trying to determine the largest number of 46s that
can be subtracted from 312, the student can just keep subtracting multiples
of 46s until the remainder is less than 46.  This method builds experience
with estimating (as well as accurate assessment of calculator answers) because
students multiply by the correct number (e.g., 50, not 5).  It is procedurally
easy for those students still mastering multiplication combinations because it
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Box 6-14

A Common Algorithm for Multidigit Division

 46  3129
–276

369

– 368
1

68

Box 6-15

Expanded Algorithm and Model for Multidigit Division

Abbreviated Model:
Build up copies of 46

50

10

40 + 6

2000

400 60

300

5 200 30

2 80 12
1 40 6

Accessible Division Algorithm:
Take away copies of 46 until no more remain

3129
–2300

829
–  460

369
–  230

139
–  92

47
–  46

R 1

50  (5s are easy: take
half of 10 × 46) 

10

5  (I already did it)

2  (doubling is easy)

1
68

46
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permits the use of products likely to be known.  It can be made as brief as the
current standard algorithm for those who can manage the abbreviation.  This
accessible division algorithm has been proposed as an alternative for some
time and since at least the 1950s has been used in some textbooks.78

The example of the accessible method given in Box 6-15 shows a solu-
tion that might be produced by a student very early in learning division.  Box
6-15 also gives a model that supports accessible methods.  The student builds
up copies of the divisor until the dividend is reached and then reads off the
quotient.  A later version of the procedure by the same student is given in
Box 6-16.  At this point the student no longer needs the drawing to give
meaning to the steps.  This version can readily be related to the more common
method in Box 6-14.

Summary of Findings on Multidigit Calculations

Research indicates that U.S. children can understand and explain proce-
dures for calculating with multidigit numbers rather than just executing them
mechanically.  This conclusion, which is especially well established for addi-
tion and subtraction,79  means that mathematical proficiency with multidigit
arithmetic is achievable by students even at early grades.  In fact, a higher
level of performance can be achieved at earlier grades than is currently
expected.80

Box 6-16

Expanded Algorithm for Multidigit Division with
Fewer Steps

46  3129
–2760

369
– 276

93
– 92

R 1

60

6

2
68
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Students acquire proficiency with multidigit algorithms by moving
through a progression of experiences.  Although there is relatively little
research on students’ learning of multiplication and division algorithms, it is
likely that their learning trajectories are similar to the ones documented for
addition and subtraction.  The progression might begin with problem model-
ing and the use of easily understood concrete representations and algorithms
and move toward more efficient methods that are less transparent and more
problem independent.  Or it might begin by learning with understanding
some method that easily makes sense when connected to the quantities
involved.  Some students invent their own methods for performing multidigit
computations, and some learn by listening to others—another student or the
teacher—explain a method.  Whatever avenue students take, their proce-
dural fluency is intertwined with their conceptual understanding and adap-
tive reasoning.  The many kinds of errors students make when multidigit
methods are not connected to place-value meanings are well documented.81

Research on addition and subtraction algorithms clearly indicates that
helping students keep the strands of proficiency connected means providing
supports for their efforts to make sense of written algorithms.  The use of
easily understood versions of algorithms can facilitate procedural fluency.  Dis-
cussing and comparing different methods, including those that students bring
from home, can provide opportunities to extend their understanding of place
value and its uses.  Teachers need to ensure that children who are less profi-
cient have a relatively advanced method they understand and can use.  The
focus of instruction, however, should be on their understanding and explain-
ing and not just on routine use.  Comparing methods through classroom dis-
cussion is a means of facilitating reflection by all children on the conceptual
and notational features of arithmetic algorithms.

Physical materials or drawings that show the different sizes of ones, tens,
and hundreds can support the development of understanding if those sup-
ports are used to develop thinking strategies for combining quantities and if
they are linked to written algorithms.  What appears to be essential is that
sufficient time and support are provided at the outset for children to develop
meaning for the algorithms.  That development hinges on certain prerequi-
site understanding (which may be developed alongside methods), and children
also need to negotiate and become more skilled with the complexities of
multistep, multidigit methods.82

How much of the precious time available for school mathematics should
be spent on written algorithms with large numbers is a question that will
need to be continually revisited during the twenty-first century.  New goals
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will arise to compete with the goal of fluency with written algorithms, as they
already have.  At present, it seems worthwhile to spend some time on written
algorithms that facilitate students’ understanding of how multidigit proce-
dures can be built from key concepts of place value and properties of the
number system, such as the distributive property.  Because calculating activi-
ties with large numbers incorporate calculations with single-digit numbers,
such activities can also buttress children’s mastery of basic arithmetic.  How-
ever, drilling for long periods on problems involving large numbers seems a
goal more appropriate to the twentieth century than the twenty-first.

Mental Arithmetic and Estimation

Written procedures for adding, subtracting, multiplying, and dividing are
the major focus of mathematics in the elementary school curriculum, and we
have discussed how they can be integrated into the other strands of children’s
developing mathematical proficiency.  We end this chapter by considering
two other kinds of calculation methods and the roles they can play in foster-
ing the development of mathematical proficiency.

Mental Arithmetic

A number of researchers have argued that mental arithmetic—calculat-
ing the solution to multidigit arithmetic problems mentally without the use
of pencil and paper—can lead to deeper insights into the number system.83

For example, a student might calculate 198 × 12 mentally by adding 2 to 198,
multiplying 200 by 12 to get 2400, and then subtracting two 12s from the
product, 2400 – 24 = 2376.  Mental arithmetic, or mental math, can provide
opportunities for students to practice and use numbers and operations in ways
that promote making sense of the mathematics and reveal further insights
into the properties of numbers and operations.

Beliefs about the contribution of mental arithmetic to the development
of mathematical proficiency have changed over time and differ across countries.
In nineteenth-century America, the ability to perform mental arithmetic was
held in high esteem.84   Mental arithmetic, particularly as performed using a
mental representation of the abacus, remains a popular activity in East Asian
countries, with international competitions and a formalized system for rating
calculation skill.85   In the United States, however, mental calculation has not
been emphasized in school mathematics in recent decades.86

Mental arithmetic places a premium on flexible procedures that take
advantage of mathematical structure and rely on well-known operations.  Stu-

In the
United
States,
mental

calculation
has not been
emphasized

in school
mathematics

in recent
decades.
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dents who have developed the ability to calculate mentally use a variety of
procedures that take advantage of their knowledge of numbers, including
working from left to right, using distributivity and other properties of arith-
metic, and factoring numbers to simplify their work.87   These procedures can
increase students’ awareness that typically there are multiple ways of solving
any calculation problem.

Children entering school have already begun developing mental proce-
dures for performing simple arithmetic, procedures that are eventually
channeled into the pencil-and-paper algorithms that they can use for most
computational work.  If they are not encouraged to continue developing mental
computation procedures, most will be inclined to view the new algorithms as
the preferred, possibly the only, methods for computing and will discontinue
use of mental procedures even when they are easier.88   There is evidence,
though, that some instruction on mental arithmetic in upper elementary
grades, if it is focused on understanding and uses number and operation prop-
erties, can move students away from the clumsy and error-prone mental use
of written algorithms toward use of a variety of mental procedures better
adapted to particular number combinations.89

Beyond its many practical uses in the modern world, mental arithmetic
can promote mathematical proficiency by bringing together the various strands.
Mental arithmetic should be taught to encourage children to reason about
the problem situation and the numbers involved, to take advantage of their
conceptual understanding of the properties and rules of arithmetic, and to
strategically select and adapt procedures to simplify a computation and cal-
culate the answer.

Estimation

Making estimates of exact answers is another form of computation that
has its own special properties and uses in developing mathematical profi-
ciency.  Estimating before solving a problem can facilitate number sense and
place-value understanding by encouraging students to use number and
notational properties to generate an approximate result.  Estimating is also a
practical skill.  It can guide students’ use of calculators, especially in identify-
ing implausible answers, and is a valuable part of the mathematics used in
everyday life.

Estimating the result of a computation is a complex skill in itself.  It may
require reformulating numbers, compensating for errors, and sometimes
restructuring a problem.90   For example, the sum 261 + 242 + 235 could be
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estimated by reformulating (in this case, rounding) each number as 250.  In
this form the simplest way of estimating the sum would be multiplying 250
by 3 and then compensating for the fact that the sum will be somewhat less
than 750.  Computational estimation takes advantage of important properties
of numbers and notational systems, including powers of ten, place value, and
relations among different operations.  It also requires recognizing that the
appropriateness of an estimate is related to the problem and its context.91

Estimation requires a flexibility of calculation that emphasizes adaptive reason-
ing and strategic competence, guided by children’s conceptual understanding
of both the problem situation and the mathematics underlying the calculation.

Research on estimation shows how difficult it is for students who receive
conventional instruction, with its frequent overemphasis on routine paper-
and-pencil calculation, to move from calculating exact answers to estimating
wisely.  For example, one study92  reported that many students’ fear of being
wrong led them to find the exact answer first and then round it to obtain a
close estimate, with this tendency increasing from grades 5 to 9.  Children
also had difficulty using powers of 10 to identify the order of magnitude of a
calculation (e.g., 4.638 × 87,325), and failed to understand that rounding can
lead to systematic errors that need to be taken into account.

Estimating the results of a computation is a complex activity that should
integrate all strands of mathematical proficiency.  Its potential benefit is lost,
however, if it is treated as a separate skill and taught as a set of isolated rules
and techniques.  Its benefit is realized when students are allowed to draw on
other strands to find ways to simplify calculations and compensate for that
simplification.  For example, the representation students make of the math-
ematical situation enables them to make simple, appropriate estimates.  Both
fluency with computational procedures and awareness of the kinds of calcu-
lations that are easy to perform contribute to successful estimation.  Finally,
estimation is a good indicator of students’ productive disposition—in this case,
their propensity to make sense of mathematical situations so that they under-
stand that estimates are not wild guesses but informed, approximate solutions.

Developmental Themes

Becoming proficient with whole numbers is more complicated than many
people realize.  It is not simply moving quickly from ignorance to compe-
tence.  Nor is it a matter of students following the teacher’s directions and
explanations and then practicing until they get it right.  Rather, it involves
students—with support from learning materials, teachers, and peers—invent-
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ing, understanding, and practicing methods; trying to learn and use concepts
that look easy to adults but are challenging for children (e.g., place value);
and gradually increasing their mathematical proficiency by continually seek-
ing to make sense of number and numerical operations.

A few basic themes are critical.  First, students’ progress viewed from a
distance is marked by a kind of gradualness and continuity, but viewed up
close it appears uneven and varied.  At any given moment, students know
and use a range of computation methods that may vary according to the
numbers in the problem, the problem situation, and other individual and class-
room variables.  A student may use different methods even on very similar
problems, and any new method competes for a long time with older methods
and may not be used consistently.  In general, however, students steadily
extend methods they understand to solve a larger variety of problems, and
they shape current methods into more efficient ones.

A second theme is the many ways in which the strands of proficiency can
be interwoven.  Initially, in classrooms focused on understanding, students’
conceptual understanding and procedural fluency are tightly connected—
students use only methods they understand.  Later, their learning in one strand
boosts their progress in the others.  As students become more fluent with
multidigit algorithms, their understanding and use of the place-value nota-
tional system become more robust.  As their reasoning about multidigit
numbers and place-value concepts improves, they make sense of more effi-
cient multidigit algorithms.  Students also actively choose among different
procedures and representations.  In so doing, they strengthen their strategic
knowledge and their conceptual understanding of the procedures and the
representations.  Not only is mathematical proficiency multidimensional, but
also the path to proficient performance requires progress along each strand
interactively.

A third and final theme is that there are some identifiable patterns in the
development of students’ proficiency as long as the strands are allowed to
develop together in mutual dependence.  Students begin their study of
number situations by modeling problems directly, using the context to shape
their concrete and often cumbersome methods.  They gradually move toward
representing problems more abstractly.  They apply methods that are less
transparent and more embedded, abbreviated, and independent of the prob-
lem.  These methods are more sophisticated mathematically, use structural
properties such as commutativity, and use the place-value symbolic notation
in productive ways.  As students begin multidigit arithmetic, it is vital that
teachers and classrooms provide support for all to build understanding of
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multidigit quantities that can enable their calculation methods to become
personally meaningful.  Mathematical proficiency with whole numbers de-
pends on all five strands developing together.
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7
DEVELOPING PROFICIENCY

WITH OTHER NUMBERS

In this chapter, we look beyond the whole numbers at other numbers
that are included in school mathematics in grades pre-K to 8, particularly in
the upper grades.  We first look at the rational numbers, which constitute
what is undoubtedly the most challenging number system of elementary and
middle school mathematics.  Then we consider proportional reasoning, which
builds on the ratio use of rational numbers.  Finally, we examine the integers,
a stepping stone to algebra.

Rational Numbers

Learning about rational numbers is more complicated and difficult than
learning about whole numbers.  Rational numbers are more complex than
whole numbers, in part because they are represented in several ways (e.g.,
common fractions and decimal fractions) and used in many ways (e.g., as parts
of regions and sets, as ratios, as quotients).  There are numerous properties
for students to learn, including the significant fact that the two numbers that
compose a common fraction (numerator and denominator) are related through
multiplication and division, not addition.1   This feature often causes mis-
understanding when students first encounter rational numbers.  Further,
students are likely to have less out-of-school experience with rational num-
bers than with whole numbers.  The result is a number system that presents
great challenges to students and teachers.

Moreover, how students become proficient with rational numbers is not
as well understood as with whole numbers.  Significant work has been done,
however, on the teaching and learning of rational numbers, and several points
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can be made about developing proficiency with them.  First, students do
have informal notions of sharing, partitioning sets, and measuring on which
instruction can build.  Second, in conventional instructional programs, the
proficiency with rational numbers that many students develop is uneven across
the five strands, and the strands are often disconnected from each other.  Third,
developing proficiency with rational numbers depends on well-designed class-
room instruction that allows extended periods of time for students to con-
struct and sustain close connections among the strands.  We discuss each of
these points below.  Then we examine how students learn to represent and
operate with rational numbers.

Using Informal Knowledge

Students’ informal notions of partitioning, sharing, and measuring provide
a starting point for developing the concept of rational number.2   Young chil-
dren appreciate the idea of “fair shares,” and they can use that understanding
to partition quantities into equal parts.  Their experience in sharing equal
amounts can provide an entrance into the study of rational numbers.  In some
ways, sharing can play the role for rational numbers that counting does for
whole numbers.

In view of the preschooler’s attention to counting and number that we
noted in chapter 5, it is not surprising that initially many children are con-
cerned more that each person gets an equal number of things than with the
size of each thing.3   As they move through the early grades of school, they
become more sensitive to the size of the parts as well.4   Soon after entering
school, many students can partition quantities into equal shares correspond-
ing to halves, fourths, and eighths.  These fractions can be generated by suc-
cessively partitioning by half, which is an especially fruitful procedure since
one half can play a useful role in learning about other fractions.5   Accompany-
ing their actions of partitioning in half, many students develop the language
of “one half” to describe the actions.  Not long after, many can partition quan-
tities into thirds or fifths in order to share quantities fairly among three or five
people.

An informal understanding of rational number, which is built mostly on
the notion of sharing, is a good starting point for instruction.  The notion of
sharing quantities and comparing sizes of shares can provide an entry point
that takes students into the world of rational numbers.6   Equal shares, for
example, opens the concept of equivalent fractions (e.g., If there are 6 chil-

In some
ways,

sharing can
play the role

for rational
numbers that

counting
does for

whole
numbers.
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dren sharing 4 pizzas, how many pizzas would be needed for 12 children to
receive the same amount?).

It is likely, however, that an informal understanding of rational numbers
is less robust and widespread than the corresponding informal understanding
of whole numbers.  For whole numbers, many young children enter school
with sufficient proficiency to invent their own procedures for adding, sub-
tracting, multiplying, and dividing.  For rational numbers, in contrast, teachers
need to play a more active and direct role in providing relevant experiences
to enhance students’ informal understanding and in helping them elaborate
their informal understanding into a more formal network of concepts and
procedures.  The evidence suggests that carefully designed instructional pro-
grams can serve both of these functions quite well, laying the foundation for
further progress.7

Discontinuities in Proficiency

Proficiency with rational numbers, as with all mathematical topics, is sig-
naled most clearly by the close intertwining of the five strands.  Large-scale
surveys of U.S. students’ knowledge of rational number indicate that many
students are developing some proficiency within individual strands.8   Often,
however, these strands are not connected.  Furthermore, the knowledge stu-
dents acquire within strands is also disconnected.  A considerable body of
research describes this separation of knowledge.9

As we said at the beginning of the chapter, rational numbers can be ex-
pressed in various forms (e.g., common fractions, decimal fractions, percents),
and each form has many common uses in daily life (e.g., a part of a region, a
part of a set, a quotient, a rate, a ratio).10   One way of describing this complex-
ity is to observe that, from the student’s point of view, a rational number is
not a single entity but has multiple personalities.  The scheme that has guided
research on rational number over the past two decades11  identifies the
following interpretations for any rational number, say 3

4
: (a) a part-whole re-

lation (3 out of 4 equal-sized shares); (b) a quotient (3 divided by 4); (c) a
measure ( 3

4
 of the way from the beginning of the unit to the end); (d) a ratio

(3 red cars for every 4 green cars); and (e) an operation that enlarges or re-
duces the size of something ( 3

4
 of 12).  The task for students is to recognize

these distinctions and, at the same time, to construct relations among them
that generate a coherent concept of rational number.12   Clearly, this process is
lengthy and multifaceted.
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Instructional practices that tend toward premature abstraction and
extensive symbolic manipulation lead students to have severe difficulty in
representing rational numbers with standard written symbols and using the
symbols appropriately.13   This outcome is not surprising, because a single
rational number can be represented with many different written symbols (e.g.,
3
5

, 12
20 , 0.6, 0.60, 60%).  Instructional programs have often treated this com-

plexity as simply a “syntactic” translation problem: One written symbol had
to be translated into another according to a sequence of rules.  Different rules
have often been taught for each translation situation.  For example, “To change
a common fraction to a decimal fraction, divide the numerator by the
denominator.”

But the symbolic representation of rational numbers poses a “semantic”
problem—a problem of meaning—as well.  Each symbol representation means
something.  Current instruction often gives insufficient attention to develop-
ing the meanings of different rational number representations and the con-
nections among them.  The evidence for this neglect is that a majority of U.S.
students have learned rules for translating between forms but understand
very little about what quantities the symbols represent and consequently make
frequent and nonsensical errors.14   This is a clear example of the lack of pro-
ficiency that results from pushing ahead within one strand but failing to con-
nect what is being learned with other strands.  Rules for manipulating sym-
bols are being memorized, but students are not connecting those rules to
their conceptual understanding, nor are they reasoning about the rules.

Another example of disconnection among the strands of proficiency is
students’ tendency to compute with written symbols in a mechanical way
without considering what the symbols mean.  Two simple examples illustrate
the point.  First, recall (from chapter 4) the result from the National Assess-
ment of Educational Progress (NAEP)15  showing that more than half of U.S.
eighth graders chose 19 or 21 as the best estimate of 12

13
 + 7

8
.  These choices

do not make sense if students understand what the symbols mean and are
reasoning about the quantities represented by the symbols.  Another survey
of students’ performance showed that the most common error for the addi-
tion problem 4 + .3 = ? is .7, which is given by 68% of sixth graders and 51% of
fifth and seventh graders.16   Again, the errors show that many students have
learned rules for manipulating symbols without understanding what those
symbols mean or why the rules work.  Many students are unable to reason
appropriately about symbols for rational numbers and do not have the strate-
gic competence that would allow them to catch their mistakes.
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Supporting Connections

Of all the ways in which rational numbers can be interpreted and used,
the most basic is the simplest—rational numbers are numbers.  That fact is so
fundamental that it is easily overlooked.  A rational number like 3

4
 is a single

entity just as the number 5 is a single entity.  Each rational number holds a
unique place (or is a unique length) on the number line (see chapter 3).  As a
result, the entire set of rational numbers can be ordered by size, just as the
whole numbers can.  This ordering is possible even though between any two
rational numbers there are infinitely many rational numbers, in drastic con-
trast to the whole numbers.

It may be surprising that, for most students, to think of a rational number
as a number—as an individual entity or a single point on a number line—is a
novel idea.17   Students are more familiar with rational numbers in contexts
like parts of a pizza or ratios of hits to at-bats in baseball.  These everyday
interpretations, although helpful for building knowledge of some aspects of
rational number, are an inadequate foundation for building proficiency.  The
difficulty is not just due to children’s limited experience.  Even the interpre-
tations ordinarily given by adults to various forms of rational numbers, such
as percent, do not lead easily to the conclusion that rational numbers are num-
bers.18   Further, the way common fractions are written (e.g., 3

4
) does not help

students see a rational number as a distinct number.  After all, 3
4

 looks just
like one whole number over another, and many students initially think of it
as two different numbers, a 3 and a 4.

Research has verified what many teachers have observed, that students
continue to use properties they learned from operating with whole numbers
even though many whole number properties do not apply to rational num-
bers.  With common fractions,19  for example, students may reason that 1

8
 is

larger than 1
7

 because 8 is larger than 7.  Or they may believe that 3
4

 equals 4
5

because in both fractions the difference between numerator and denomina-
tor is 1.  With decimal fractions,20  students may say .25 is larger than .7 be-
cause 25 is larger than 7.  Such inappropriate extensions of whole number
relationships, many based on addition, can be a continuing source of trouble
when students are learning to work with fractions and their multiplicative
relationships.21

The task for instruction is to use, rather than to ignore, the informal knowl-
edge of rational numbers that students bring with them and to provide them
with appropriate experiences and sufficient time to develop meaning for these
new numbers and meaningful ways of operating with them.  Systematic errors
can best be regarded as useful diagnostic tools for instruction since they more
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often represent incomplete rather than incorrect knowledge.22   From the cur-
rent research base, we can make several observations about the kinds of learn-
ing opportunities that instruction must provide students if they are to de-
velop proficiency with rational numbers.  These observations address both
representing rational numbers and computing with them.

Representing Rational Numbers

As with whole numbers, the written notations and spoken words used for
decimal and common fractions contribute to—or at least do not help correct—
the many kinds of errors students make with them.  Both decimals and com-
mon fractions use whole numbers in their notations.  Nothing in the notation
or the words used conveys their meaning as fractured parts.  The English
words used for fractions are the same words used to tell order in a line: fifth in
line and three fifths (for 3

5
).  In contrast, in Chinese, 3

5
 is read “out of 5 parts

(take) 3.”  Providing students with many experiences in partitioning quanti-
ties into equal parts using concrete models, pictures, and meaningful con-
texts can help them create meaning for fraction notations.  Introducing the
standard notation for common fractions and decimals must be done with care,
ensuring that students are able to connect the meanings already developed
for the numbers with the symbols that represent them.

Research does not prescribe a one best set of learning activities or one
best instructional method for rational numbers.  But some sequences of
activities do seem to be more effective than others for helping students develop
a conceptual understanding of symbolic representations and connect it with
the other strands of proficiency.23   The sequences that have been shown to
promote mathematical proficiency differ from each other in a number of ways,
but they share some similarities.  All of them spend time at the outset help-
ing students develop meaning for the different forms of representation.  Typi-
cally, students work with multiple physical models for rational numbers as
well as with other supports such as pictures, realistic contexts, and verbal
descriptions.  Time is spent helping students connect these supports with
the written symbols for rational numbers.

In one such instructional sequence, fourth graders received 20 lessons
introducing them to rational numbers.24   Almost all the lessons focused on
helping the students connect the various representations of rational number
with concepts of rational number that they were developing.  Unique to this
program was the sequence in which the forms were introduced: percents,
then decimal fractions, and then common fractions.  Because many children
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in the fourth grade have considerable informal knowledge of percents, per-
cents were used as the starting point.  Students were asked to judge, for
example, the relative fullness of a beaker (e.g., 75%), and the relative height
of a tube of liquid (e.g., 30%).  After a variety of similar activities, the percent
representations were used to introduce the decimal fractions and, later, the
common fractions.  Compared with students in a conventional program, who
spent less time developing meaning for the representations and more time
practicing computation, students in the experimental program demonstrated
higher levels of adaptive reasoning, conceptual understanding, and strategic
competence, with no loss of computational skill.  This finding illustrates one
of our major themes: Progress can be made along all strands if they remain
connected.

Another common feature of learning activities that help students under-
stand and use the standard written symbols is the careful attention the activi-
ties devote to the concept of unit.25   Many conventional curricula introduce
rational numbers as common fractions that stand for part of a whole, but little
attention is given to the whole from which the rational number extracts its
meaning.  For example, many students first see a fraction as, say, 3

4
 of a pizza.

In this interpretation the amount of pizza is determined by the fractional part
( 3

4
) and by the size of the pizza.  Hence, three fourths of a medium pizza is

not the same amount of pizza as three fourths of a large pizza, although it may
be the same number of pieces.  Lack of attention to the nature of the unit or
whole may explain many of the misconceptions that students exhibit.

A sequence of learning activities that focus directly on the whole unit in
representing rational numbers comes from an experimental curriculum in
Russia.26   In this sequence, rational numbers are introduced in the early grades
as ratios of quantities to the unit of measure.  For example, a piece of string is
measured by a small piece of tape and found to be equivalent to five copies of
the tape.  Children express the result as “string/tape = 5.”  Rational numbers
appear quite naturally when the quantity is not measured by the unit an exact
number of times.  The leftover part is then represented, first informally and
then as a fraction of the unit.  With this approach, the size of the unit always
is in the foreground.  The evidence suggests that students who engage in
these experiences develop coherent meanings for common fractions, mean-
ings that allow them to reason sensibly about fractions.27
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Computing with Rational Numbers

As with representing rational numbers, many students need instructional
support to operate appropriately with rational numbers.  Adding, subtracting,
multiplying, and dividing rational numbers require that they be seen as numbers
because in elementary school these operations are defined only for numbers.
That is, the principles on which computation is based make sense only if
common fractions and decimal fractions are understood as representing
numbers.  Students may think of a fraction as part of a pizza or as a batting
average, but such interpretations are not enough for them to understand what
is happening when computations are carried out.  The trouble is that many
students have not developed a meaning for the symbols before they are asked
to compute with rational numbers.

Proficiency in computing with rational numbers requires operating with
at least two different representations: common fractions and finite decimal
fractions.  There are important conceptual similarities between the rules for
computing with both of these forms (e.g., combine those terms measured
with the same unit when adding and subtracting).  However, students must
learn how those conceptual similarities play out in each of the written symbol
systems.  Procedural fluency for arithmetic with rational numbers thus requires
that students understand the meaning of the written symbols for both common
fractions and finite decimal fractions.

What can be learned from students’ errors? Research
reveals the kinds of errors that students are likely to make as they begin com-
puting with common fractions and finite decimals.  Whether the errors are
the consequence of impoverished learning of whole numbers or insufficiently
developed meaning for rational numbers, effective instruction with rational
numbers needs to take these common errors into account.

Some of the errors occur when students apply to fractions poorly under-
stood rules for calculating with whole numbers.  For example, they learn to
“line up the numbers on the right” when they are adding and subtracting
whole numbers.  Later, they may try to apply this rule to decimal fractions,
probably because they did not understand why the rule worked in the first
place and because decimal fractions look a lot like whole numbers.  This
confusion leads many students to get .61 when adding 1.5 and .46, for
example.28

It is worth pursuing the above example a bit further.  Notice that the rule
“line up the numbers on the right” and the new rule for decimal fractions
“line up the decimal points” are, on the surface, very different rules.  They

Copyright © National Academy of Sciences. All rights reserved.



2397 DEVELOPING PROFICIENCY WITH OTHER NUMBERS

prescribe movements of digits in different-sounding ways.  At a deeper level,
however, they are exactly the same.  Both versions of the rule result in align-
ing digits measured with the same unit—digits with the same place value
(tens, ones, tenths, etc.).  This deeper level of interpretation is, of course, the
one that is more useful.  When students know a rule only at a superficial
level, they are working with symbols, rules, and procedures in a routine way,
disconnected from strands such as adaptive reasoning and conceptual under-
standing.  But when students see the deeper level of meaning for a proce-
dure, they have connected the strands together.  In fact, seeing the second
level is a consequence of connecting the strands.  This example illustrates
once more why connecting the strands is the key to developing proficiency.

A second example of a common error and one that also can be traced to
previous experience with whole numbers is that “multiplying makes larger”
and “dividing makes smaller.”29   These generalizations are not true for the
full set of rational numbers.  Multiplying by a rational number less than 1
means taking only a part of the quantity being multiplied, so the result is less
than the original quantity (e.g., 2

3
 × 12 = 8, which is less than 12).  Likewise,

dividing by a rational number less than 1 produces a quantity larger than
either quantity in the original problem (e.g., 6 ÷ 2

3
 = 9).

As with the addition and subtraction of rational numbers, there are im-
portant conceptual similarities between whole numbers and rational num-
bers when students learn to multiply and divide.  These similarities are often
revealed by probing the deeper meaning of the operations.  In the division
example above, notice that to find the answer to 6 ÷ 2 = ? and 6 ÷ 2

3
 = ?, the

same question can be asked: How many [2s or 2
3

s] are in 6?  The similarities
are not apparent in the algorithms for manipulating the symbols.  Therefore,
if students are to connect what they are learning about rational numbers with
what they already understand about whole numbers, they will need to do so
through other kinds of activities.

One helpful approach is to embed the calculation in a realistic problem.
Students can then use the context to connect their previous work with whole
numbers to the new situations with rational numbers.  An example is the
following problem:

I have six cups of sugar.  A recipe calls for 2
3

 of a cup of sugar.  How many
batches of the recipe can I make?

Since the size of the parts is less than one whole, the number of batches will
necessarily be larger than the six (there are nine 2

3
s in 6).  Useful activities
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might include drawing pictures of the division calculation, describing solu-
tion methods, and explaining why the answer makes sense.  Simply teaching
the rule “invert and multiply” leads to the same sort of mechanical manipula-
tion of symbols that results from just telling students to “line up the decimal
points.”

What can be learned from conventional and experimen-
tal instruction? Conventional instruction on rational number com-
putation tends to be rule based.30   Classroom activities emphasize helping
students become quick and accurate in executing written procedures by fol-
lowing rules.  The activities often begin by stating a rule or algorithm (e.g.,
“to multiply two fractions, multiply the numerators and multiply the denomi-
nators”), showing how it works on several examples (sometimes just one),
and asking students to practice it on many similar problems.  Researchers
express concern that this kind of learning can be “highly dependent on
memory and subject to deterioration.”31   This “deterioration” results when
symbol manipulation is emphasized to the relative exclusion of conceptual
understanding and adaptive reasoning.  Students learn that it is not impor-
tant to understand why the procedure works but only to follow the prescribed
steps to reach the correct answer.  This approach breaks the incipient con-
nections between the strands of proficiency, and, as the breaks increase, pro-
ficiency is thwarted.

A number of studies have documented the results of conventional
instruction.32   One study, for example, found that only 45% of a random sample
of 20 sixth graders interviewed could add fractions correctly.33   Equally dis-
turbing was that fewer than 10% of them could explain how one adds fractions
even though all had heard the rules for addition, had practiced the rules on
many problems, and sometimes could execute the rules correctly.  These
results, according to the researchers, were representative of hundreds of inter-
views conducted with sixth, seventh, and ninth graders.  The results point to
the need for instructional materials that support teachers and students so that
they can explain why a procedure works rather than treating it as a sequence
of steps to be memorized.

Many researchers who have studied what students know about opera-
tions with fractions or decimals recommend that instruction emphasize con-
ceptual understanding from the beginning.34   More specifically, say these
researchers, instruction should build on students’ intuitive understanding of
fractions and use objects or contexts that help students make sense of the
operations.  The rationale for that approach is that students need to under-

Conventional
instruction
on rational

number
computation

tends to be
rule based.
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stand the key ideas in order to have something to connect with procedural
rules.  For example, students need to understand why the sum of two frac-
tions can be expressed as a single number only when the parts are of the same
size.  That understanding can lead them to see the need for constructing
common denominators.

One of the most challenging tasks confronting those who design learning
environments for students (e.g., curriculum developers, teachers) is to help
students learn efficient written algorithms for computing with fractions and
decimals.  The most efficient algorithms often do not parallel students’ infor-
mal knowledge or the meaning they create by drawing diagrams, manipulat-
ing objects, and so on.  Several instructional programs have been devised that
use problem situations and build on algorithms invented by students.35

Students in these programs were able to develop meaningful and reasonably
efficient algorithms for operating with fractions, even when the formal algo-
rithms were not presented.36   It is not yet clear, however, what sequence of
activities can support students’ meaningful learning of the less transparent
but more efficient formal algorithms, such as “invert and multiply” for divid-
ing fractions.

Although there is only limited research on instructional programs for
developing proficiency with computations involving rational numbers, it seems
clear that instruction focused solely on symbolic manipulation without under-
standing is ineffective for most students.  It is necessary to correct that
imbalance by paying more attention to conceptual understanding as well as
the other strands of proficiency and by helping students connect them.

Proportional Reasoning

Proportions are statements that two ratios are equal.  These statements
play an important role in mathematics and are formally introduced in middle
school.  Understanding the underlying relationships in a proportional situa-
tion and working with these relationships has come to be called proportional
reasoning.37   Considerable research has been conducted on the features of
proportional reasoning and how students develop it.38

Proportional reasoning is based, first, on an understanding of ratio.  A
ratio expresses a mathematical relationship that involves multiplication, as in
$2 for 3 balloons or 2

3
 of a dollar for one balloon.  A proportion, then, is a

relationship between relationships.  For example, a proportion expresses the
fact that $2 for 3 balloons is in the same relationship as $6 for 9 balloons ( 2

3
 = 6

9
).

Ratios are often changed to unit ratios by dividing.  For example, the unit
ratio 2

3
 dollars per balloon is obtained by “dividing” $2 by 3 balloons.  The

Copyright © National Academy of Sciences. All rights reserved.



242 ADDING IT UP

ratio or rate, $ 2
3

 per balloon, is called the unit rate because it is the cost of one
balloon.  The unit rate may be useful to students when they think about real
situations.39   In this case it describes the precise manner by which any num-
ber of dollars can be compared with any number of balloons at the same price.

Proportional reasoning has been described as the capstone of elementary
school arithmetic and the gateway to higher mathematics, including algebra,
geometry, probability, statistics, and certain aspects of discrete mathemat-
ics.40   Nevertheless, U.S. seventh and eighth graders have not performed
well on even simple proportion problems such as finding the cost of 6 pieces
of candy if 2 pieces cost 8 cents and if the price of the candy is the same no
matter how many are sold.41   On the 1996 NAEP, only 12% of eighth-grade
students could solve a problem involving the comparison of two rates, 8 miles
every 10 minutes and 20 miles every 25 minutes.42

Research tracing the development of proportional reasoning shows that
children have some informal knowledge of proportions.  Studies with second
graders have suggested that their intuitive understanding is insufficient for
solving certain proportion problems.43   Proficiency grows as students connect
different aspects of proportional reasoning.44   Three aspects are especially
important.  First, students’ reasoning is facilitated as they learn to make com-
parisons based on multiplication rather than just addition.  For example, con-
sider two marigolds that were 8 inches and 12 inches tall two weeks ago and
11 inches and 15 tall inches now.  Which plant grew more?  There are two
different correct responses to this question.  An additive or absolute compari-
son focuses on the difference and concludes that each plant grew the same,
3 inches.  A multiplicative or relative comparison looks at the change relative
to the original height; the shorter plant grew 3

8
 of its original height, while

the larger plant grew less, just 3
12  of its original height.  Either answer is

correct depending on whether “grew more” is interpreted in absolute or
relative terms.  The ability to reason about comparisons in relative terms is
closely tied to reasoning proportionally.45

A second aspect is that students’ reasoning is facilitated as they distin-
guish between those features of a proportion situation that can change and
those that must stay the same.46   In a proportion the quantities composing a
ratio can change together in such a way that the relationship between them
(the quotient) remains the same.  Some students are inclined to take a more
simplistic view, believing that if something changes, everything changes.  In
a proportion the numbers in the ratios can change but the multiplicative rela-
tionship must stay the same (e.g., $2 for 3 balloons expresses the same relation-
ship as $4 for 6 balloons).  The physical situation is not the same because the
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second ratio refers to twice as many dollars and balloons as the first.  What is
the same is the multiplicative relationship between the dollars and the bal-
loons or, said another way, the cost of a single balloon (the unit rate).  Written
symbolically, without labels, the statement becomes 2

3
 = 4

6
.  But notice how

the important contextual framework is lost with this abstract notation.
Proportional reasoning is further enhanced as the first two aspects are

connected with a third: Students’ reasoning is facilitated as they learn to build
composite units, or units of units.  The rate “$2 for 3 balloons” or “2-for-3” is
a composite unit.47   The ability to use composite units is one of the most
obvious differences between students who reason well with proportions and
those who do not.48   Students who reason correctly about proportional situa-
tions often choose one ratio as a composite unit and use it as a comparative
base.  For example, they might use “2-for-3” to examine whether another
ratio, such as 12-for-24, has the same relationship.  By building up the 2-for-3
units (2-for-3, 4-for-6, 6-for-9, 8-for-12, 10-for-15, 12-for-18), the students re-
alize 2-for-3 is not proportional to 12-for-24, because 12-for-24 cannot be gen-
erated with the 2-for-3 composite unit.  There is a danger, of course, in using
this essentially additive building-up process to generate equivalent ratios
because students may not understand that the relationship is multiplicative.
They need to see that 2-for-3 and 6-for-9, for example, express the same rela-
tionship or unit rate because 9 is the same multiple of 3 as 6 is of 2.  But
building from composite units does provide many students with a useful tool
for working with proportional situations.

The conceptual aspects of proportional reasoning usually play out in three
types of proportion problems.  Missing value problems present three values
and ask students to find the fourth or missing value (e.g., If 3 balloons cost $2,
then how much do 24 balloons cost?).  Numerical comparison problems ask
students to determine which of two given ratios represents more or less (e.g.,
Which is the better value: 3 balloons for $2 or 24 balloons for $12?).  Qualita-
tive comparison problems ask students to evaluate the effect on a ratio of a
qualitative change in one or both of the quantities involved (e.g., What happens
to the price of a balloon if you get more balloons for the same amount of
money?).  Traditionally, instruction has focused on missing-value problems,
with some attention to numerical comparisons.  For both kinds of problems,
traditional textbooks tend to emphasize formal strategies from the begin-
ning49 —setting up a correct equation (3:2 = 24:x), using a variable for the
missing value, and using a “cross-multiplication” algorithm (3x = 48 or x = 16).

It should be clear from the previous analysis that moving directly to the
cross-multiplication algorithm, without attending to the conceptual aspects
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of proportional reasoning, can create difficulties for students.  The aspects of
proportional reasoning that must be developed can be supported through
exploring proportional (and nonproportional) situations in a variety of prob-
lem contexts using concrete materials or situations in which students collect
data, build tables, and determine the relationships between the number pairs
(ratios) in the tables.50   When 187 seventh-grade students with different cur-
ricular experiences were presented with a sequence of realistic rate problems,
the students in the reform curricula considerably outperformed a comparison
group of students 53% versus 28% in providing correct answers with correct
support work.51   These students were part of the field trials for a new middle
school curriculum in which they were encouraged to develop their own pro-
cedures through collaborative problem-solving activities.  The comparison
students had more traditional, teacher-directed instructional experiences.

Proportional reasoning is complex and clearly needs to be developed over
several years.52   One simple implication from the research suggests that pre-
senting the cross-multiplication algorithm before students understand pro-
portions and can reason about them leads to the same kind of separation
between the strands of proficiency that we described earlier for other topics.
But more research is needed to identify the sequences of activities that are
most helpful for moving from well-understood but less efficient procedures
to those that are more efficient.

Ratios and proportions, like fractions, decimals, and percents, are aspects
of what have been called multiplicative structures.53   These are closely related
ideas that no doubt develop together, although they are often treated as sepa-
rate topics in the typical school curriculum.  Reasoning about these ideas
likely interacts, but it is not well understood how this interaction develops.
Much more work needs to be done on helping students integrate their knowl-
edge of these components of multiplicative structures.

Integers

The set of integers comprises the positive and negative whole numbers
and zero or, expressed another way, the whole numbers and their inverses,
often called their opposites (see Chapter 3).  The set of integers, like the set
of whole numbers, is a subset of the rational numbers.  Compared with the
research on whole numbers and even on noninteger rational numbers, there
has been relatively little research on how students acquire an understanding
of negative numbers and develop proficiency in operating with them.
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A half-century ago students did not encounter negative numbers until
they took high school algebra.  Since then, integers have been introduced in
the middle grades and even in the elementary grades.  Some educators have
argued that integers are easier for students than fractions and decimals and
therefore should be introduced first.  This approach has been tried, but there
is very little research on the long-term effects of this alternative sequencing
of topics.

Concept of Negative Numbers

Even young children have intuitive or informal knowledge of nonpositive
quantities prior to formal instruction.54   These notions often involve action-
based concepts like those associated with temperature, game moves, or other
spatial and quantitative situations.  For example, in some games there are
moves that result in points being lost, which can lead to scores below zero or
“in the hole.”

Various metaphors have been suggested as approaches for introducing
negative numbers, including elevators, thermometers, debts and assets, losses
and gains, hot air balloons, postman stories, pebbles in a bag, and directed
arrows on a number line.55   Many of the physical metaphors for introducing
integers have been criticized because they do not easily support students’
understanding of the operations on integers (other than addition).56   But some
studies have demonstrated the value of using these metaphors, especially for
introducing negative numbers.57

Students do appear to be capable of understanding negative numbers far
earlier than was once thought.  Although more research is needed on the
metaphors and models that best support students’ conceptual understanding
of negative numbers, there already is enough information to suggest that a
variety of metaphors and models can be used effectively.

Operations with Integers

Research on learning to add, subtract, multiply, and divide integers is
limited.  In the past, students often learned the “rules of signs” (e.g., the
product of a positive and negative number is negative) without much under-
standing.  In part, perhaps, because instruction has not found ways to make
the learning meaningful, some secondary and college students still have dif-
ficulty working with negative numbers.58

Alternative approaches, using the models mentioned earlier, have been
tried with various degrees of success.59   A complete set of appropriate learn-
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ing activities with integers has not been identified, but there are some prom-
ising elements that should be explored further.  Students generally perform
better on problems posed in the context of a story (debts and assets, scores
and forfeits) or through movements on a number line than on the same prob-
lems presented solely as formal equations.60   This result suggests, as for other
number domains, that stories and other conceptual structures such as a number
line can be used effectively as the context in which students begin their work
and develop meaning for the operations.  Furthermore, there are some
approaches that seem to minimize commonly reported errors.61   In general,
approaches that use an appropriate model of integers and operations on inte-
gers, and that spend time developing these and linking them to the symbols,
offer the most promise.

Beyond Whole Numbers

Although the research provides a less complete picture of students’
developing proficiency with rational numbers and integers than with whole
numbers, several important points can be made.  First, developing proficiency
is a gradual and prolonged process.  Many students acquire useful informal
knowledge of fractions, decimals, ratios, percents, and integers through
activities and experiences outside of school, but that knowledge needs to be
made more explicit and extended through carefully designed instruction.
Given current learning patterns, effective instruction must prepare for inter-
ferences arising from students’ superficial knowledge of whole numbers.  The
unevenness many students show in developing proficiency that we noted
with whole numbers seems especially pronounced with rational numbers,
where progress is made on different fronts at different rates.  The challenge
is to engage students throughout the middle grades in learning activities that
support the integration of the strands of proficiency.

A second observation is that doing just that—integrating the strands of
proficiency—is an even greater challenge for rational numbers than for whole
numbers.  Currently, many students learn different aspects of rational num-
bers as separate and isolated pieces of knowledge.  For example, they fail to
see the relationships between decimals, fractions, and percents, on the one
hand, and whole numbers, on the other, or between integers and whole num-
bers.  Also, connections among the strands of proficiency are often not made.
Numerous studies show that with common fractions and decimals, especially,
conceptual understanding and computational procedures are not appropri-
ately linked.  Further, students can use their informal knowledge of propor-
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tionality or rational numbers strategically to solve problems but are unable to
represent and solve the same problem formally.  These discontinuities are of
great concern because the research we have reviewed indicates that real
progress along each strand and within any single topic is exceedingly difficult
without building connections between them.

A third issue concerns the level of procedural fluency that should be
required for arithmetic with decimals and common fractions.  Decimal frac-
tions are crucial in science, in metric measurement, and in more advanced
mathematics, so it is important for students to be computationally fluent—to
understand how and why computational procedures work, including being
able to judge the order-of-magnitude accuracy of calculator-produced answers.
Some educators have argued that common fractions are no longer essential in
school mathematics because digital electronics have transformed almost all
numerical transactions into decimal fractions.  Technological developments
certainly have increased the importance of decimals, but common fractions
are still important in daily life and in their own right as mathematical objects,
and they play a central role in the development of more advanced mathematical
ideas.  For example, computing with common fractions sets the stage for com-
puting with rational expressions in algebra.  It is important, therefore, for
students to develop sound meanings for common fractions and to be fluent
with ordering fractions, finding equivalent fractions, and using unit rates.
Students should also develop procedural fluency for computations with
“manageable” fractions.  However, the rapid execution of paper-and-pencil
computation algorithms for less frequently used fractions (e.g., 7

24  + 11
54

) is
unnecessary today.

Finally, we cannot emphasize too strongly the simple fact that students
need to be fully proficient with rational numbers and integers.  This profi-
ciency forms the basis for much of advanced mathematical thinking, as well
as the understanding and interpretation of daily events.  The level at which
many U.S. students function with rational numbers and integers is unaccept-
able.  The disconnections that many students exhibit among their concep-
tual understanding, procedural fluency, strategic competence, and adaptive
reasoning pose serious barriers to their progress in learning and using math-
ematics.  Evidence from experimental programs in the United States and
from the performance of students in other countries suggests that U.S. middle
school students are capable of learning more about rational numbers and
integers, with deeper levels of understanding.
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8
DEVELOPING MATHEMATICAL

PROFICIENCY BEYOND NUMBER

In this chapter, we go beyond number to examine other domains of school
mathematics in grades pre-K to 8.  Because a great deal of the curriculum
dealing with number leads naturally to algebra and because whether and how
to teach algebra to all children is a hotly debated topic in many schools, we
devote the bulk of the chapter to issues of beginning algebra.  The first section
is organized according to the algebraic activities of representing, transform-
ing, and generalizing and justifying, which allows us to survey the literature
relevant to learning algebra in grades pre-K to 8.  We close the chapter with
two briefer sections: one on measurement and geometry, the other on statis-
tics and probability.  As we noted in Chapters 1 and 3, these domains are
intimately related to number.  Measurement is one of the most common uses
of number, and the geometry studied in elementary and middle school uses
lengths, areas, and volumes usually expressed as numerical quantities.
Statistics and probability involve the quantification of phenomena dealing
with data and chance.  Throughout the last two sections we emphasize the
strands of conceptual understanding and adaptive reasoning because these
have been the focus of much recent research and because traditional instruc-
tion has tended to emphasize the development of procedural fluency instead.

Beginning Algebra

For most students, school algebra—with its symbolism, equation solv-
ing, and emphasis on relationships among quantities—seems in many ways
to signal a break with number and arithmetic.  In fact, algebra builds on the
proficiency that students have been developing in arithmetic and develops it

Algebra
builds on the
proficiency
that students
have been
developing
in arithmetic
and develops
it further.
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further.  In particular, the place-value numeration system used for arithmetic
implicitly incorporates some of the basic concepts of algebra, and the algo-
rithms of arithmetic rely heavily on the “laws of algebra.”  Nevertheless, for
many students, learning algebra is an entirely different experience from learn-
ing arithmetic, and they find the transition difficult.

The difficulties associated with the transition from the activities typi-
cally associated with school arithmetic to those typically associated with school
algebra have been extensively studied.1   In this chapter, we review in some
detail the research that examines these difficulties and describe new lines of
research and development on ways that concepts and symbol use in elemen-
tary school mathematics can be made to support the development of alge-
braic reasoning.  These recent efforts have been prompted in part by the
difficulties exposed by prior research and in part by widespread dissatisfaction
with student learning of mathematics in secondary school and beyond.  The
efforts attempt to avoid the difficulties many students now experience and to
lay the foundation for a deeper set of mathematical experiences in secondary
school.  Before reviewing the research, we first describe and illustrate the
main activities of school algebra.

Previous chapters have shown how the five strands of conceptual under-
standing, procedural fluency, strategic competence, adaptive reasoning, and
productive disposition are interwoven in achieving mathematical proficiency
with number and its operations.  These components of proficiency are equally
important and similarly entwined in successful approaches to school algebra.

The Main Activities of Algebra

What is school algebra?  Various authors have given different definitions,
including, with “tongue in cheek, the study of the 24th letter of the alphabet
[x].”2   To understand more fully the connections between elementary school
mathematics and algebra, it is useful to distinguish two aspects of algebra
that underlie all others: (a) algebra as a systematic way of expressing generality
and abstraction, including algebra as generalized arithmetic; and (b) algebra
as syntactically guided transformations of symbols.3   These two main aspects
of algebra have led to various activities in school algebra, including represen-
tational activities, transformational (rule-based) activities, and generalizing
and justifying activities.4

The representational activities of algebra involve translating verbal infor-
mation into symbolic expressions and equations that often, but not always,
involve functions.  Typical examples include generating (a) equations that
represent quantitative problem situations in which one or more of the quan-
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tities are unknown, (b) functions describing geometric patterns or numerical
sequences, and (c) expressions of the rules governing numerical relationships
(see Box 8-1 for an example of each).

Proficiency with representational activities involves conceptual under-
standing of the mathematical concepts, operations, and relations expressed
in the verbal information, and it involves strategic competence to formulate
and represent that information with algebraic equations and expressions.
Hence, facility with generating expressions and equations combines two of
the strands of mathematics proficiency.

The second kind of algebraic activities—the transformational or rule-based
activities—includes, for instance, collecting like terms, factoring, expanding,
substituting, solving equations, and simplifying expressions.  These activities
are largely concerned with changing the form of an expression or equation to
an equivalent one using the rules for manipulating algebraic symbols.  For
example, in solving the equation 4(x + 3) = 2x + 19, you can replace the
expression 4(x + 3) by the equivalent expression 4x + 12.  Subsequently, by
subtracting 2x and then 12 from both sides, the equation 4x + 12 = 2x + 19 can
be replaced by the equivalent equation 2x = 7; finally, dividing both sides by

Box 8-1

Representational Activities of Algebra

1. There are 3 piles of stones; the first has 5 less than the third, and the second
has 15 more than the third.  There are 31 altogether.  Find the number in each pile.

2. Say to yourself what you see in the picture sequence.  Then state a rule for
extending the sequence of pictures indefinitely.

3. The sum of two consecutive numbers is always an odd number.  Can you
show why, using algebra?

SOURCES: Bell, 1995, p. 61; Lee and Wheeler, 1987, p. 160; Mason, 1996, p. 84.
Used by permission of Elsevier Science and of Kluwer Academic Publishers.

l

l l

l l l l l l l l l
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2 yields the solution x = 3 1
2 .  Facility with symbolic computation in algebra

has an obvious parallel with, and indeed draws upon, procedural fluency in
the domain of number.  Just as in arithmetic, aspects of conceptual under-
standing and strategic competence interact with each other and with proce-
dural fluency in transformational activities in algebra.

Lastly, there are the generalizing and justifying activities.  These include
problem solving, modeling, noting structure, justifying, proving, and predict-
ing.  These activities are not exclusive to algebra, but they often use its
language and tools.  For example, the consecutive numbers problem (show
that the sum of two consecutive numbers is always an odd number) illus-
trates how algebra is used to generalize and justify.5   Arithmetic can be used
to generate many instances to show that the sum of two consecutive numbers
is odd: 3 + 4 = 7, 12 + 13 = 25, and so on.  But the representational and trans-
formational aspects of algebra make it possible to justify that the sum is always
odd.  The sum of two consecutive integers can be represented with algebra
as x + (x + 1), where the key is the recognition that x represents any whole
number.  This expression can be transformed into the equivalent expression
2x + 1, which is the general form of any odd number.  This example illustrates
the power of algebra, as against arithmetic, as a tool for making generaliza-
tions and providing justifications, at least for those learners who understand
how statements using variables express generality.

Generalizing and justifying activities typically involve examining and
interpreting representations that have previously been generated or manipu-
lated.  Such activities can provide insight into, for example, the underlying
mathematical structure of a situation, or they can yield answers to specific
questions or conjectures.  They encourage students to develop an awareness
of the role that algebra can play in mathematical thinking.  All of the strands
of algebraic proficiency come together in these activities, especially adaptive
reasoning.

One of the great strengths of algebra is that, for experts, a great deal of its
transformational activity can be carried out in what appears to be a rather
automated manner.  Once a student makes the transformation rules his or her
own, the algorithms of algebra can be executed, in a sense, without thinking.
The student needs to be thinking, for example, not of what the letters in the
expressions refer to or of the operations he or she is carrying out, but only that
the actions on the symbolic objects are allowable.  In fact, once an expression
or equation has been generated (or provided) and the goal is known, it seems
to be treated in an almost mindless fashion.  But is that possible?
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Every algebraic manipulation involves an anticipatory element, a sense
of the direction in which you want to be going and of what the desired
expression will look like once you get there.6   The development of this sense
of anticipation provides an alternative to the “blind” manipulation that is so
often performed by beginning algebra students.7   Research suggests, how-
ever, that such anticipatory thinking is not acquired without effort.  Even
students with extensive algebra experience can make poor strategic decisions
that leave them “going round in circles” because they cannot seem to “see”
the right thing in algebraic expressions.8

The transformational aspects of algebra have traditionally been empha-
sized in U.S. textbooks, which have tended to pay more attention to the rules
to be followed in manipulating symbolic expressions and equations than to
the concepts that support those rules or give meaning to the expressions or
equations being manipulated.  Although few experimental comparisons have
been conducted, research has shown that rule-based instructional approaches
that do not give students opportunities to create meaning for the rules or to
learn when to use them can lead to forgetting,9  unsystematic errors,10  reli-
ance on visual clues,11  and poor strategic decisions.12   For example, experi-
enced algebra students were found to choose inappropriate strategies when
deciding what to do next in the simplification of an algebraic expression and
would often end up with an expression that was more difficult to deal with,
even though they had performed legal transformations.13   Beginning algebra
students were found to be quite haphazard in their approach; they might
simplify 4(6x – 3y) + 5x as 4(6x – 3y – 5x) on one occasion and do something
else on another.14   When the consecutive numbers problem was given to 113
high school students who had studied algebra, only 8 worked the problem
correctly.15   The rest made a variety of errors, including substituting a few
values for x to show the sum’s “oddness,” using different letters for each num-
ber (x and y), representing the consecutive numbers as 1x and 2x, and setting
the expression x + (x + 1) equal to a fixed odd number and then solving for x.
In one of the few experimental studies of rule-based instruction, students
who were taught an estimate-and-test sense-making strategy performed better
in solving systems of equalities and inequalities than students taught rule-
based equation solving.16

Data from the National Assessment of Educational Progress (NAEP) fur-
ther reveal the shortcomings of traditional school algebra.  For example, one
of the NAEP tasks from the second mathematics assessment involved com-
pleting the table shown in Box 8-2.  Most of the students with one or two
years of algebra could recognize the pattern—adding 7—from the given nu-
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Box 8-2

Table Completion Task from NAEP

Give the values of y when x = 3 and when x = n.

x 1 3 4 7 n

y 8 11 14

SOURCE: Carpenter, Corbitt, Kepner, Lindquist, and Reys, 1981. Used by permis-
sion of the National Council of Teachers of Mathematics.

merical values and use it when x = 3 (with success rates of 69% and 81% for
the two groups of students, respectively).  They were less successful, how-
ever, when asked to derive from the same table the value of y when x = n
(correct response: y = n + 7; success rates: 41% and 58%, respectively).

The next three sections of the chapter present representative findings
from the large body of research on algebra learning and teaching for the three
types of algebraic activity sketched above.  Since much of this research has
been carried out with students making the transition from arithmetic to alge-
bra, it casts light on the kinds of thinking that students bring with them to
algebra from the traditional arithmetic curriculum centered on algorithmic
computation that has been predominant in U.S. schools.17   Indeed, many
studies have been oriented toward either developing approaches to teaching
algebra that take this arithmetic thinking into account or, more recently, devel-
oping approaches to elementary school mathematics that build foundations
of algebraic reasoning earlier.

Much research also has focused on linear relations and linear functions,
perhaps because these are considered the easiest and are the first ones
encountered by students making the transition from arithmetic to algebra.
Although the domain of algebra is far richer than linear relations, much of the
research at the cusp of arithmetic and algebra focuses on them.18   Some of the
newer curriculum programs, however, introduce nonlinear relations along with
linear relations in the middle grades.  In particular, exponential growth rela-
tions (e.g., doubling) have been shown to be an accessible topic for middle
school students.19
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Several of the teaching approaches discussed in the following sections
have profitably used computer technologies, especially graphics, as a means
of making algebraic symbolism more meaningful.  These studies provide evi-
dence of the positive role that computer-supported approaches can play in
the learning of algebra, as well as suggesting that technology can be a means
for making algebra accessible to all students, including those who, for what-
ever reason, lack skill in pencil-and-paper computation.20   Thus, these
examples suggest that some version of “algebra for all” may be viable.

The Representational Activities of Algebra

What the Number-Proficient Student Brings

Traditional representational activities of algebra center on the formation
of algebraic expressions and equations.  Creating these expressions and equa-
tions involves understanding the mathematical operations and relations and
representing them through the use of letters and—for equations—the equal
sign.  It also requires thinking that proceeds in rather different ways from the
thinking that develops in traditional arithmetic.

In the transition from arithmetic to algebra, students need to make many
adjustments, even those students who are quite proficient in arithmetic.  At
present, for example, elementary school arithmetic tends to be heavily answer
oriented and does not focus on the representation of relations.21   Students
beginning algebra, for whom a sum such as 8 + 5 is a signal to compute, will
typically want to evaluate it and then, for example, write 13 for the box in the
equation 8 + 5 =  + 9 instead of the correct value of 4.  When an equal sign
is present, they treat it as a separator between the problem and the solution,
taking it as a signal to write the result of performing the operations indicated
to the left of the sign.22   Or, when doing a sequence of computations, students
often treat the equal sign as a left-to-right directional signal.  For example,
consider the following problem:

Daniel went to visit his grandmother, who gave him $1.50.  Then he bought a
book for $3.20.  If he has $2.30 left, how much money did he have before
visiting his grandmother?

In solving this problem, sixth graders will often write 2.30 + 3.20 = 5.50 – 1.50
= 4.00, tacking the second computation onto the result of the first.23   Since
2.30 + 3.20 equals 5.50, not 5.50 – 1.50, the string of equations they have
written violates the definition of equality.  To modify their interpretation of
the equality sign in algebra, students must come to respect the true meaning
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of equality as a statement that the two sides of an equation are equal to each
other.

Students oriented toward computation are also perplexed by an expres-
sion such as x + 3; they think they should be able to do something with it, but
are unsure as to what that might be.  They are not disposed to think about the
expression itself as being the subject of attention.  Similarly, they need to
rethink their approach to problems.  In solving a problem such as “When 3 is
added to 5 times a certain number, the sum is 38; find the number,” students
emerging from arithmetic will subtract 3 from 38 and then divide by 5—
undoing in reverse order, as they have been taught, the operations stated in
the problem text.  In contrast, they will be taught in algebra classes first to
represent the relationships in the situation by using those operations and not
reversing them: 3 + 5x = 38.

Although most students beginning algebra have had some experience
with the use of letters in arithmetic, such as finding the number n such that
n + 12 = 37, rarely have they worked with more general problem situations in
which the letter can take on any of an infinite set of values.  In a third-grade
class,24 the students were presented with the problem, “Who can make up a
number sentence that equals 10 but has more than two numbers adding up to
10?”  Most students started with examples like 5 + 2 + 3 = 10 and
8 + 1 + 1 = 10, but the class went on to generate a variety of equations,
including 200 – 200 + 10 = 10 and 1,000,000 – 1,000,000 + 10 = 10.  With the
teacher’s help, they soon were able to formulate the equation x – x + 10 = 10,
for any number x.  This use of a letter as variable, where the letter can take on
a range of values, is seldom seen in typical elementary school mathematics.
More often, the letter, or some placeholder, represents an unknown, and only
one numerical value will make the equation true.  In algebra, both of these
conceptions of literal terms (or letters) are important.

A number of recent intervention studies have shown how selected modi-
fications of elementary school mathematics might support the development
of algebraic reasoning.  One approach infuses elementary mathematics with a
systematic use of problems requiring students to generalize, to determine
values of a literal term that satisfy quantitative constraints (with or without
equations), or to treat numbers in algebraic ways.  For example, students
might be asked to determine how many ways the number 4 can be written
using a given number of 1s and the four basic operations.  Since each expres-
sion must equal 4, students must distinguish among the different possibilities
on the basis of their symbolic form rather than their value when evaluated.25

Copyright © National Academy of Sciences. All rights reserved.



2638 DEVELOPING MATHEMATICAL PROFICIENCY BEYOND NUMBER

Another approach is to assist elementary school teachers in modifying
their instructional materials and classroom practices to emphasize generaliz-
ing and expressing generality in elementary mathematics, particularly using
patterns, functions, and the notions of variable.  Third graders whose teachers
were given such assistance showed substantial increases in their understand-
ing of variable and equality compared with traditionally instructed students
in the same grade and school.  Further, these third graders outperformed
fourth graders on items testing number sense from a mandated statewide
assessment.26

A third approach to modifying elementary school mathematics focuses
on helping teachers understand their students’ thinking when the students
are asked to generalize operations and properties from arithmetic.  In one
combination first-and-second-grade class, the teacher focused on number
sentences twice a week during the school year.  Instruction started with true
and false number sentences and progressed to increasingly complex forms of
open sentences.  Number sentences were also used to help the children
articulate and represent conjectures about properties of numbers and opera-
tions.  By the end of the year most of the students (13 of 17) developed a
relational concept of equality and operations, along with an ability to form
and express general relations among number sentences.27   In particular, the
majority of these students no longer made mistakes like writing 13 for the
box in 8 + 5 =  + 9.

Much of the difficulty that students experience when they first encounter
algebra is symptomatic of the cognitive challenges inherent in moving from
one mode of thinking to another, from arithmetic reasoning to algebraic reason-
ing.  Research on algebra learning has sought to uncover the ways in which
beginning algebra students think, thus helping ease their transition into
algebra.  In the examples cited above of research on more algebraic approaches
to elementary school mathematics that are intended to avoid transition prob-
lems, the approaches are in their early stages.  Although the long-term impact
of these approaches is still unknown, they offer considerable promise for avoid-
ing the difficulties many students now experience.

Developing Meaning

Much of the algebra research in the 1970s and early 1980s yielded evidence
that incoming algebra students have trouble interpreting letters as variables.28

Building on these findings, recent work has focused on how students learn to
use algebraic letters to represent a range of values.
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One investigator studied an approach designed to address students’ diffi-
culties with thinking about and symbolizing algebraic expressions.29   Students
were asked to give instructions to an “idealized mathematics machine”: for
example, “I want the machine to add 5 to any number I give it; how will I
write the instructions?” or “I want the machine to add any two numbers I
give it” or “Have the machine find the area of any square, given a side.”  The
students easily made sense of the idea of employing letters to write rules that
would enable the machine to solve whole classes of problems.  In the examples
above, the rules would be expressed using (x + 5), (x + y), and x2, respectively.
This approach addresses two issues related to the introduction of algebra: the
usefulness or purpose of learning algebra, and the difficulty of new algebraic
concepts.  The investigator emphasized that “children who are not persuaded
on the former point will make little effort to try and come to terms with the
latter” and added that “certainly the evidence . . . clearly indicated this to be
the case.”30   The majority of the students in the study made significant gains
in thinking about the letters in algebraic expressions as taking on multiple
values (from 23% correct on the pretest to 85% correct on the delayed posttest)
and in improving their attitude toward algebra (at the beginning of the study,
they “hated algebra, didn’t understand it” and complained that “letters are
stupid; they don’t mean anything”).31   Later research in which students used
actual computers confirmed these results, both with respect to increasing the
students’ motivation and developing their understanding of algebraic expres-
sions as general computational procedures.32

Representational activities of algebra can interact with well-established
natural-language-based habits.  These interactions are particularly clear in
the well-studied class of tasks exemplified by the so-called students-and-
professors problem:33

At a certain university, there are six times as many students as professors.
Using S for the number of students and P for the number of professors, write
an equation that gives the relation between the number of students and the
number of professors.

A robust reversal error is committed by a majority of students, ranging from
first-year algebra students to college freshmen, who write “6S = P” and treat
the “6” as an adjective modifying the “S” as if it were a noun.34   This error
occurs across different versions of the problem and is resistant to easy correc-
tion.35   The error, while of intrinsic interest, has an especially important con-
nection to the instruction that students receive prior to studying algebra.  In
particular, detailed correlational analyses have shown that the error’s robust-
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ness is strongly associated with students’ understanding of rates and ratios—
the worse their understanding, the more robust the error.36   Such findings
could signal the connections between building proficiency in using algebra
as a representational tool and building conceptual understanding of number
ideas—in this case, multiplicative ideas.  Interestingly, related findings show
that a procedural perspective that treats the variables in the equation as input-
output pairs leads to improved equation-writing performance,37  which is con-
sistent with the results described above using the idealized machine and the
computer.

A series of teaching experiments conducted over three years during the
late 1980s in Mexico and the United Kingdom demonstrated the potential of
computer spreadsheets to help students grasp the meaning of variables and
algebraic expressions, including students who had been having difficulty with
traditional approaches to algebraic symbolism.38   Further, spreadsheets can
provide a vehicle for introducing students to formal symbolism.39   For an
example of how a student can profit from the use of a spreadsheet, see Box 8-3.
This student was a tenth grader in a low mathematics track of a school in
England who had little previous experience with algebra.

Experimental studies involving spreadsheets have also shown enhanced
student learning relative to traditional instruction.40   Studies of the use of
spreadsheets have found that it is relatively easy for students to pass from a
mixture of spreadsheet and algebraic notation to traditional algebraic sym-
bolism.41   It should be noted that the spreadsheet approach involves creating
a range of values for the expressions that represent the various relationships
in the problem statement.  Thus, a spreadsheet column of the values that are
generated provides an explicit representation of sample values of each variable.
Moreover, the particular value of X that solves the problem is often found in
one line of the spreadsheet array (if the situation is linear).  In the spread-
sheet approach, therefore, the unknown is viewed simply as that particular
value that satisfies the constraints of the problem.

In general, the use of spreadsheets has been found to be an effective way
to develop several notions involved in the representational activities of alge-
bra.  It encourages discussion of the role of a letter as both a variable and an
unknown; it provides meaningful experience in creating algebraic expres-
sions; and it puts the focus squarely on the representation of quantitative
relationships.  Research from both small-group instruction42  and broad-based
implementations involving several schools43  provides support for these claims.

Closely related to spreadsheets are intelligent tutors in which students
label spreadsheet-like worksheets and fill in calculated results for specific
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Box 8-3

Building on Spreadsheet Experiences

Jo, like several of her 14- and 15-year-old peers, had some previous experience
with algebra.  But she disliked mathematics and had performed very poorly on the
algebra test given at the beginning of the study.  She viewed algebraic symbols as
no more than letters of the alphabet whose numerical values corresponded to
their position in the alphabet.  During a four-month study (with one lesson per
week), Jo learned how to use a spreadsheet to solve various kinds of word prob-
lems.  At the end of the study, she was given the following problem to solve (with
no computer available):

One hundred chocolates were distributed to three groups of children.  The
second group received four times as many chocolates as the first group.
The third group received 10 chocolates more than the second group.  How
many chocolates did the first, second, and third groups receive?

Jo drew a spreadsheet on paper and showed in her written solution how the spread-
sheet code was beginning to play a role in her thinking processes.  Interviewed
subsequently, she was asked,

“If we call this cell x, what could you write down for the number of choco-
lates in the other groups?”

She wrote the following, which shows that she was now able to represent the
problem using the literal symbols of algebra (note that the syntax of many spread-
sheets requires the entry of an equal sign before the algebraic expression):

= x = x × 4 = x × 4 + 10

SOURCE: Sutherland, 1993, p. 22. Used by permission of Micromath.

values of the variable.44   For example, given the situation that a plumbing
company charges $42 per hour plus $35 for the service call, students are asked
to find the cost of a 3-hour service call and of a 4.5-hour service call.  This
inductive-support strategy has students provide an arithmetic representation
for the problem before being asked to give the algebraic representation.  Such
an intelligent tutor has been made part of an experimental ninth-grade algebra
curriculum that focuses on the mathematical analysis of realistic situations.
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When the curriculum was tested in three urban schools, students in the ex-
perimental classes significantly outperformed students in comparison classes
on standardized tests (42% correct vs. 37% correct) and on tests targeting the
curriculum’s objectives (38% correct vs. 18% correct).45

Recent research in algebra learning also has examined coordinate graphs
as a means of representing the relationships of problem situations and pro-
viding visual support for symbolic expressions.  This use of graphs has usually
been done with families of functions; that is, linear functions, quadratic
functions, exponential functions, and so on.  The wide assortment of com-
puter graphing packages on the market that not only generate coordinate
graphs but also link operations on them to updated tabular and symbolic rep-
resentations have made it feasible for mathematics teachers to use innovative
approaches involving these representations.46

One research group that has worked extensively with multirepresentational
approaches to the teaching of elementary algebra has developed a computer-
intensive, function-based algebra curriculum focused on problem solving that
has been tested in first-year algebra classes, as well as college algebra classes.47

The curriculum uses several kinds of software to “develop students’ under-
standing of algebra concepts and their ability to solve problems requiring
algebra, before they master symbol manipulation techniques.”48   An adapta-
tion of a sample problem from the curriculum is presented in Box 8-4.

Even though this curriculum was not intended as an alternative curricu-
lum to be compared to a traditional one, members of the research team car-
ried out a few such evaluations.  Interviews and tests of one cohort of stu-
dents at the end of their first year of algebra showed that the experimental
group did significantly better than their counterparts from conventional classes
in improving their problem-solving abilities and in comprehending the no-
tion of variable.  For example, in constructing mathematical representations,
the success rates were 48% versus 21%; in interpreting mathematical repre-
sentations, 78% versus 28%; and in planning solutions and solving problems,
77% versus 66%, respectively.49

A similar approach to teaching algebra that involves graphing calculators
has been implemented in a three-year high school mathematics curriculum
used in several states.50   When students from three schools at the end of their
third year in this curriculum were compared with students nearing the end of
their high school algebra experience in advanced algebra classes in three other
schools, the students in the new curriculum did better than the comparison
group on algebraic tasks that were embedded in applied problem contexts
when graphing calculators were available (43% correct for the project group
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Weather Balloon Problem

Situation.  Summer weather in Maryland and Pennsylvania brings heavy clouds
and thunderstorms on many late afternoons.  As warm, moist air rises, it cools.
When the air has cooled to the condensation temperature, it forms water drops.
These data were recorded by a weather balloon sent up on a warm day.

Data

Altitude Temperature in
in meters degrees centigrade

0 32
500 27

1000 23
1500 18
2000 14.5
2500 9
3000 3.5
3500 -3

1. Use a function-fitting program to find a linear function that describes the
data well.  Record the rule relating temperature, t (a), to altitude, a, rounding
the coefficient and constant term appropriately.

t (a) = ____.

2. Explain what the slope and constant term reveal about the temperature as it
is related to altitude.

3. Look at a plot of your data and the fitted function to see how well the rule
matches the experimental data.  Can you see any reason that the altitude
and temperature data are not exactly linear?  How well does the fitted func-
tion represent a reasonable range of values for the altitude?

SOURCE: Heid, 1990, p. 195.  A later version of this problem appears in Fey,
Heid, et al., 1999, p. 171. Used by permission of the National Council of Teachers
of Mathematics.

Box 8-4
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vs. 34% for the comparison group).  On transformation tasks involving equa-
tion solving and expression simplification without any context and for which
calculators were not permitted, however, the comparison group scored higher
(38% correct vs. 29%).  This finding did not surprise the researchers because
the new curriculum had not emphasized symbolic manipulation with paper
and pencil, whereas the curriculum for the comparison group had consisted
almost exclusively of such manipulation.  In fact, when the equation-solving
tasks were presented in a contextualized form, such as the example shown in
Box 8-5, the students in the new curriculum were more successful than the
comparison students (61% correct vs. 45%).51

The ways that graphing calculator use can produce improved student
performance were examined more deeply in a recent study.52   The study
used a three-condition pretest-posttest design to study the impact of pro-
longed use of the graphing calculator throughout the entire school year for all
topics of the mathematics curriculum (i.e., functions and graphs, change,
exponential and periodic functions).  Three experimental classes used the
graphing calculator throughout the year; a second set of five experimental
classes used the graphing calculator with only one topic for six weeks; and
four classes, which served as the control group, covered the same subject
matter throughout the year but without the graphing calculator.  The students
who used the calculator throughout the year had enriched solution reper-

Box 8-5

Water Business Problem

The Turtle Mountain Springs Company made plans for growth in its share of the
water business.  They predicted that annual income from the sale of its bottled
water B and filters F would change over time according to the following formulas.
Time, t, is in years since 1990, and income is in millions of dollars per year.

Bottled Water Income: B = 20 + 5t

Filtering Devices Income: F = 28 + 3t

Question: When does the Turtle Mountain Springs Company expect the two water
products to give the same annual income?

SOURCE: Huntley, Rasmussen, Villarubi, Sangtong, and Fey, 2000, p. 347. Used by
permission of the author.
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toires and a better understanding of functions.  The students who used the
graphing calculator for only a short period of time did no better on the posttest
than the students in the control group.  They merely replaced their algebraic
and guess-and-test procedures with graphing methods.  Unlike the students
who spent more time using the graphing calculator, they were not able to
enrich their conceptual understanding of functions.

The widespread availability of computer and graphing-calculator tech-
nologies has dramatically affected the kinds of representational activities that
have been developed and studied since the 1980s.  Today’s graphing pro-
grams, curve fitters, spreadsheets, and spreadsheet-like generators of tables
of values and so on have been found to provide more effective environments
than pencil and paper for introducing students to variables, algebraic expres-
sions, and equations in a problem-solving context.  Research has documented
that the visual and numerical supports provided for symbolic expressions by
digital representations of graphs and tables help students create meaning for
expressions and equations in ways difficult to manage in learning environ-
ments not supported by computers or calculators.  More research is needed
into the ways that computers and graphing calculators are being used and can
be used effectively in the early grades.

The Transformational Activities of Algebra

What the Number-Proficient Child Brings

In the previous section, we discussed some of the perspectives brought
to the study of algebra by students emerging from traditional elementary school
arithmetic.  These perspectives included the following:

• An orientation to execute operations rather than to use them to rep-
resent relationships; which leads to

• Use of the equal sign to announce a result rather than signify an
equality;

• Use of inverse or undoing operations to solve a problem and the cor-
responding absence of a notion of describing a situation with the stated op-
erations of a problem; and

• A perception of letters as representing unknowns but not variables.

In this section, we discuss additional features of arithmetic thinking that must
be addressed when students encounter the transformational activities of
algebra.
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Students who are proficient with arithmetic are generally assumed to have
facility with the arithmetic operations of addition and multiplication and their
inverses (subtraction and division), with computations written in a horizontal
form, and with the equivalence of numerical expressions.  These notions,
however, are not always as well cultivated in elementary school mathematics
as they should be if they are to serve as a basis for algebraic reasoning.

Students emerging from six or seven years of elementary school math-
ematics are ordinarily aware of the close relationship between addition and
subtraction.  After all, they check subtraction written vertically by adding the
answer (the difference) to the number above it (the subtrahend) to see if it
gives the number in the top line of the subtraction (the minuend).  But they
seem less comfortable with moving among the written forms of this relation-
ship—for example, from an addition statement written horizontally to its
equivalent subtraction (e.g., writing 35 + 42 = 77 as 35 = 77 – 42).  Thus, these
students seem somewhat bewildered when asked in initial algebra instruc-
tion to express, say, x + 42 = 77 as x = 77 – 42.  The same confusion over the
written notation for the inverse relationship between addition and subtrac-
tion is seen in the errors students make in solving equations53  when they
judge, say, x + 37 = 150 to be equivalent to x = 37 + 150 and x + 37 = 150 to be
equivalent to x + 37 – 10 = 150 + 10.

Solving equations and simplifying expressions require the ability to reason
about operations as expressions of quantitative relationships rather than just
procedures.  Researchers have found that sixth graders lack adequate
experience in developing this ability.  Students were asked to judge the equiva-
lence (without computing the totals) of three-term arithmetic expressions
with a subtraction and an addition operation;54  for example, 685 – 492 + 947,
947 + 492 – 685, 947 – 685 + 492, and 947 – 492 + 685.  The typical answer was
that you needed to calculate to decide whether the expressions were equiva-
lent.  Similar results were found in another study55  when students of the
same age were presented with the task of stating the value of  in the
expression (235 + ) + (679 – 122) = 235 + 679.  Findings such as these illus-
trate that traditionally instructed students who are proficient with numbers
need to shift from thinking about “finding the answer” to thinking about the
“numerical relationships” underlying the calculations they perform and the
nature of the methods they use.

Students’ experience with equivalence in earlier grades is often restricted
to their study of equivalent fractions.  For example, 1

2  is equivalent to 2
4

,
which is equivalent to 3

6
, and so on.  But this equivalence is one of numbers,

not of operations or expressions.  There are few opportunities in the present
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elementary school number curriculum for students to gain experience with
these more abstract forms of equivalence.  It would be helpful, for example,
if the curriculum included perimeter problems in which students were asked
to calculate the perimeter of a 7-by-4 rectangle in three ways that yield equiva-
lent expressions: 2(7 + 4), (2 × 7) + (2 × 4), and 7 + 7 + 4 + 4.  Such situations
are ideal for initiating discussions of the equivalence of arithmetic expressions
and of the properties underlying that equivalence.  Because such occasions
are currently quite rare in the part of the curriculum dealing with number,
however, notions of equivalence generally have to be further developed when
arithmetic is extended to algebra.

Developing Meaning

Students’ notions of equality and equivalence, as well as their deepening
understanding of the relationship between operations and their inverses, are
developed through the transformational activities of algebra, especially those
related to simplifying expressions and solving equations.  A great deal of re-
search has been carried out on this sphere of algebraic activity.

Performing the same operation on both sides of the equation is an impor-
tant formal equation-solving procedure.  This method, however, is often not
the first one taught to students.  Trial-and-error substitution of values for the
unknown and other informal techniques such as the cover-up method and
working backwards (undoing) are used to introduce equation solving (see
Box 8-6).

In one comparison of the cover-up method with the formal procedure of
performing the same operation on both sides of the equation in six seventh-
grade classes, the students who learned to solve equations by means of the
cover-up method performed better than those who learned both methods in
close proximity.56   The students who learned to solve equations using only
the formal method performed worse than those who learned both methods.
These findings suggest that students learning formal methods of equation
solving may benefit from well-timed prior instruction in the informal tech-
nique of “cover up.”

Another study found that students who were entering their first algebra
course showed one of two preferences when solving simple linear equations
in which there was only one operation: Some used trial-and-error substitu-
tion; the others used undoing.57   For two-step equations involving two opera-
tions such as 2x – 5 = 11, the latter group of students spontaneously extended
their right-to-left undoing technique: Take 11, add 5 to it, then divide by 2.
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Box 8-6

Two Methods for Solving Equations

Cover-Up Method Work Backward (Undoing) Method

2x + 9 = 5x 2x + 5 = 11

Cover up 9. Undo adding 5; subtract 5 from 11;

Since 2x + (cover up) = 5x, 2x = 6

9 = 3x. Undo multiplying by 2; divide 6 by 2;

Cover up x. x = 3.

Since 3 times (cover up) equals 9,

x = 3.

For equations involving multiple operations, such as 3x + 4 – 2x = 8, they
erroneously generalized their method and simply undid each operation as
they came to it.  For example, they would take 8, divide it by 2, add 4, and
then subtract 3.  (They had to ignore the last operation of multiplication
because they had run out of operands.)  A preference for the undoing method
of equation solving seemed to work against the students when they were
later taught the procedure of performing the same operation on both sides of
an equation.  The students who preferred the undoing method were, in gen-
eral, unable to make sense of “performing the same operation on both sides.”
The instruction seemed to have its greatest impact on those students who
had an initial preference for the informal method of substitution and who
viewed the equation as a balance between left and right sides.  This observa-
tion suggests that learning to operate on the structure of a linear equation by
performing the same operation on both sides may be easier for students who
already view equations as entities with symmetric balance and not as state-
ments about a calculation on the left side and the answer on the right.

Despite the considerable body of research on creating meaning for the
transformational activities of algebra, few researchers have been able to shed
light on the long-term acquisition and retention of transformational fluency.
In one study, students were able to produce a meaningful justification for
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equivalence transformations, but soon afterwards most remembered only the
rules, and some did not even remember that much.58   According to another
study, recency of experience seems to account best for students’ ability to
carry out certain transformational activities.59   Regardless of the teaching
approach used, whether reform-based or traditional (i.e., oriented toward
symbol manipulation), students’ ability to carry out successfully the transfor-
mational activities of algebra by the end of their high school career appears to
be severely limited.  This result has been found repeatedly, even in recent
studies: “Few students [can] do the kinds of basic symbolic calculation that
are common fare on college-admission and placement tests.”60

The Role of Technology

Transformational activities of algebra have benefited substantially less
than representational activities from the use of computer technology to help
develop meaning and skill.  Nevertheless, a few researchers have used graph-
ing technology as a means of providing a foundation for simplifying expres-
sions and solving equations.61   This research is based on the idea that an
important aspect of students’ mathematical development is their ability to
support the symbolic transformations of algebraic objects by means of visual
representations.  For instance, the graphs of two functions can be added geo-
metrically to arrive at a third graph whose expression is their algebraic sum.
Equations also can be solved by graphing the functional expressions on each
side of an equation on a computer or graphing calculator, zooming in on the
point of intersection, and finding the approximate value of x for which the
two functions are equal.

In one study the students had become so skilled at graphing linear func-
tions by focusing on the y-intercept and slope that they could do it mentally
(see Box 8-7).  Although most teachers of algebra would be happy if a student
could solve equations mentally by visualizing graphs, they would not be
satisfied with solutions found by such informal methods.  The issue is not,
however, simply being able to produce a more accurate solution than one
obtained by examining a graph.  If it were, computer software and calculators
that can do symbol manipulation could be called on to generate solutions that
are as accurate as desired.  The issue is the role the process plays in learning:

When symbol manipulators become widely available, we will probably
take the same view with equation solving that we do with graphing.
That is, we will continue to teach students paper-and-pencil means
for solving linear equations because the idea is important and the process
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Box 8-7

Mentally Graphing to Find the Solution to an Equation

Toward the end of a study of equation solving by means of a graphical representa-
tion, a seventh grader was asked to solve the equation 7x + 4 = 5x + 8 (an equation
whose solution is x = 2).  Rather than graph the two expressions, the student took
a “shortcut.”

Interviewer: Can you solve 7x + 4 = 5x + 8?

Jer: Well, you could, see, it would be like start at 4 and 8, this one would go up by
7, hold on, 8, 8 and 7, hold on, no, 4 and 7, 4 and 7 is 11.  They’d be equal, like, 2 or
3 or something like that.

Interviewer: How are you getting that 2 or 3?

Jer: I’m just like graphing it in my head.

SOURCE: Kieran and Sfard, 1999, p. 15. Used by permission of the author.

is generalizable, but we will also teach how to use symbol manipulators
to solve these and more-complicated equations [emphasis added].62

Thus, most teachers—for the time being, at least—remain insistent that
students learn to do by hand the various algebraic transformations of expres-
sions and equations.  In 1989 one mathematics educator noted that “the
unanswered question standing in the way of reducing the manipulative skills
agenda of secondary school algebra is whether students can learn to plan and
interpret manipulations of symbolic forms without being themselves profi-
cient in the execution of those transformations.”63   Very little research has
been conducted since then to help resolve the question; however, the research
that has been done is quite telling.  A recent study investigated the impact on
algebra achievement of a three-year integrated mathematics curriculum in
which technology was used to perform symbolic manipulations as well as to
link various representations of problem situations.64   In this study, which
involved over 300 high school students in 12 schools, some support was found
for the notion that learning how to interpret results of algebraic calculations is
not highly dependent on the ability to perform the calculations themselves.

Copyright © National Academy of Sciences. All rights reserved.



276 ADDING IT UP

Furthermore, skill in algebraic symbol manipulation was not a prerequisite
for the students’ success in problem solving, and as the researchers empha-
sized, “when those students had access to the kind of technological tools that
are becoming standard mathematical tools, they could overcome limited per-
sonal calculation skills.”65

Although researchers have made notable advances in finding ways to make
representing and interpreting algebraic expressions and equations more mean-
ingful for students with the help of computer and calculator technology, simi-
lar efforts in the realm of transforming expressions and equations have been
less abundant.  As inexpensive symbol manipulators continue to become avail-
able for the algebra classroom, it may be feasible to develop and evaluate
programs that incorporate their use.  At present, despite the occasional use of
calculator- and computer-supported approaches to the transformational
activities of algebra, the traditional rule-based methods for developing
manipulative skills tend to dominate.  However, few people at any level in
education are satisfied that the traditional approach leads to sufficient profi-
ciency in algebra for most students.

Generalizing and Justifying Activities of Algebra

In this section, we consider activities such as solving problems, modeling
situations, noting mathematical structure, justifying, proving, and predicting.
None of these activities is exclusive to algebra, but in all of them algebra is
often used as a tool.  Several of these activities require a certain level of skill
in representing and transforming algebraic expressions, as well as in adaptive
reasoning.  Two problems from the research literature help illustrate the issues
(see Box 8-8).

Justifying Generalizations

Students given Problem A in Box 8-8 tended to give a strictly numerical
justification in Part 1.  The explicit demand of Part 2 to use algebra, however,
requires translating the nonspecific number and the sequence of operations
into algebraic notation and then manipulating that notation to obtain an ex-
pression that can be interpreted in terms of the problem’s conditions.  If x is
the number, that translation yields

5 12 4 4 12 4

4 3 4

3

x x x

x

x

+ −( ) ⇒ +( )
⇒ +( )
⇒ +

/ /

/

.
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Box 8-8

Problems That Involve Generalizing and Justifying
Activities

Problem A

Part 1.  A girl multiplies a number by 5 and then adds 12.  She then subtracts the
original number and divides the result by 4.  She notices that the answer she gets
is 3 more than the number she started with.  She says, “I think that would happen,
whatever number I started with.”

Part 2.  Using algebra, show that she is right.

Problem B

Triangular numbers can be built with dots as shown below.  The first four triangular
numbers are 1, 3, 6, and 10.
Part 1.  Predict the number of dots in the 20th triangle.

Part 2.  Give a rule for predicting the number of dots in any triangle.

SOURCES: Arzarello, 1992; Lee and Wheeler, 1987. Used by permission of Springer-
Verlag and by the authors.

2 3 4 5

and so on

1

More specifically, the major conceptual demands of Problem A are the
following: (a) translating from a verbal representation to a symbolic represen-
tation through the use of a letter as a variable to represent “any number,”
(b) manipulating the algebraic expression to yield simpler equivalent expres-
sions with the underlying aim of arriving at an expression indicating “3 more
than the number she started with,” and (c) being aware that the algebraic
result—the expression x + 3—constitutes a proof or justification of the result
that one obtains empirically by trying several particular numbers.  Note that
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the only conceptual demand that is somewhat independent of the context is
manipulating the algebraic expression to yield simpler algebraic expressions.
That activity is very important, however, since it allows the student to see at
a glance why the result for the above problem is always x + 3, whatever the
value of x.  The evolving sequence of simplified algebraic expressions can
permit a perception of “x + 3-ness” in a way that is not so readily available
from simply reading the problem.  Thus, the algebraic representation can
induce an awareness of structure that is much more difficult, if not impos-
sible, to achieve using everyday language.

One hundred eighteen algebra students who had already taken algebra
for a year were given Problem A.  Only nine set up the expression (5x + 12 – x)/4
and then reduced it algebraically to x + 3.  Four of them went on to “demon-
strate further” by substituting a couple of numerical values for x.  Thirty-four
others set up the equation (5x + 12 – x)/4 = x + 3 and then proceeded to
simplify the left side, yet they did not base their conclusions on their alge-
braic work.  Instead, they worked numerical examples and drew conclusions
from them.

For the great majority of students, therefore, this task posed enormous
problems both in representing a general statement and in using that state-
ment to justify numerical arguments.  According to the researchers, these
students seemed completely lost when asked to use algebra.  “Formulating
the algebraic generalization was not a major problem for the [few] students
who chose to do so; using it and appreciating it as a general statement was
where these students failed.”66   Therefore, for the students who responded
to the request to use algebra, their difficulties were related not to the simpli-
fication of the expression but to the third of the conceptual demands outlined
above: being aware that the algebraic result constitutes a proof or justification
of the arithmetical result that one obtains empirically by trying several num-
bers.  This research also suggests that even when students are successfully
taught symbolic manipulation, they may fail to see the power of algebra as a
tool for representing the general structure of a situation.  Without some skill
with symbolic manipulations, however, students are unlikely to use algebra
to justify generalizations.

Predicting Patterns

Tasks involving geometric and numerical patterns are a frequent means
of introducing students to the use of algebra for predicting.  Problem B in
Box 8-8 is typical.  To help students find a pattern in the arrangement of dots

Even when
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in the problem, they might be asked to use a table of values in which the first
column points to a position in the sequence and the second column gives the
corresponding number of dots.67

Sequential position (x) Number of dots (y)
of the triangular number in the triangular number

1 1
2 3
3 6
4 10
M M

Two kinds of rules describe this table.  One, the recursive rule, is based on
an analysis of the growth occurring in the right-hand column.  For the nth
triangle, add n dots to the number of dots in the previous triangle.  But this
right-hand regularity, which is not too difficult to detect, is easier to say in
words than to symbolize algebraically.  The other kind of rule, the closed form,
requires analyzing both columns together to try to determine a relationship
between a member of the left-hand column and the corresponding member
in the right-hand column.  Algebra students have more difficulty deriving the
latter rule, y = x(x + 1)/2, than the former.68

The use of computer technology can enable students to engage in activi-
ties like those above without having to generate or transform algebraic equa-
tions on their own.69   But students have to learn how to use the equations
produced by the technology to make predictions, even if they do not actually
generate them by hand.

Through an emphasis on generalization, justification, and prediction,
students can learn to use and appreciate algebraic expressions as general state-
ments.  More research is needed on how students develop such awareness.
At the same time, more attention needs to be paid to including activities in
the curriculum on identifying structure and justifying.  Their absence is an
obstacle to developing the “symbol sense”70  that constitutes the power of
algebra.

Algebra for All

Because of advancements in the use of technology and its prevalence
today, a greater understanding of the fundamentals of algebra and algebraic
reasoning is viewed as necessary for all members of society, including those
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who are low achieving or underserved.71   The U.S. eighth-grade curriculum
is not as advanced as those of other countries.  In the Third International
Mathematics and Science (TIMSS) Video Study, for example, whereas 40%
of U.S. eighth-grade lessons included topics from arithmetic, German and
Japanese eighth-grade lessons were more likely to cover algebra and
geometry.72   Over the past decade, however, more and more U.S. schools
have started to offer first-year algebra in the eighth grade.  According to data
collected by NAEP, 25% of eighth-grade students were enrolled in algebra in
1996 compared with 16% in 1990.73   Further, all but 3% of the twelfth-grade
students reported that they had taken first-year algebra, the majority in grade
9.  Although the goal of “algebra for all” has essentially been achieved by the
time students reach the end of high school, many of these students experi-
ence difficulties in their first course in algebra.

The study of algebra need not begin with a formal course in the subject.
Recent research and development efforts have been encouraging.  By focus-
ing on ways to use the elementary and middle school curriculum to support
the development of algebraic reasoning, these efforts attempt to avoid the
difficulties many students now experience and to lay a better foundation for
secondary school mathematics.74   From the earliest grades of elementary
school, students can be acquiring the rudiments of algebra, particularly its
representational aspects.  They can observe that over time and across differ-
ent circumstances, numerical quantities may vary in principled ways—the
essence of the concept of variable.  They can learn about functions by study-
ing how a change in one variable is reflected in the behavior of another.  As
students encounter algebraic ideas, they discover the value of precise language
and of working with clear definitions.

Once students are familiar with the laws of arithmetic, they can learn to
see them as a convenient summary of arithmetic practice and as a valuable
guide to methods that work.  Students can learn to express the laws algebra-
ically and can use them to support their reasoning and to justify their claims
about numbers.  It is important that they become aware of the role played by
general statements expressed in algebraic symbols when justifying numeri-
cal arguments or discussing classes of situations.  Little is known, however,
about the relative effectiveness of strategies for helping students learn to
justify their claims.  With the development of new approaches to algebra and
the infusion of the rudiments of algebra in the elementary and middle grades,
an algebra-proficient population might become a reality.
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Measurement and Geometry

In elementary and middle school mathematics, the closely related do-
mains of measurement and geometry are often referred to as measure and
space.  Geometry, as its Greek origin as “earth measure” indicates, is a route
for developing an understanding of two- and three-dimensional space.
Measurement, too, is a process that links mathematics with the world, and
with science in particular.  Measure is a diverse topic, built on the need to
quantify particular attributes of an object or phenomenon.  By learning about
how length, area, and volume are measured, students mentally structure and
revise their construction of space, both large-scale and small-scale.  When
they study science, they need to know about other measures, such as time,
density, and speed, and they need to know about choosing a measurement
scale and considering the precision of their measurements.  Although mea-
surement and the theory behind it can be treated as distinct from geometry,
there is much pedagogical value in returning geometry to its roots in spatial
measure.  Our discussion focuses on the measurement of length, area, and
volume, three measures that are the basis for the connection between geom-
etry and number, as shown in chapter 3 through the geometric interpreta-
tions of the operations of addition and multiplication.

Acquiring Measure Concepts

The early work of Piaget and his collaborators75  focused on showing that
understanding measure entails successive mental restructurings of space.  The
idea of a unit of measure is fundamental, as is the notion that measurement
involves the organized accumulation of standard units.  Further, conservation
of length, area, and volume (understanding that these quantities do not change
under transformations such as reflection or other rigid motion) was consid-
ered both a hallmark of, and a constraint on, children’s development in each
domain of spatial measure.  Studies conducted in the last two decades, how-
ever, have generally failed to support the contention that there is a tight
coupling between understanding a spatial measure and knowing when it is
conserved.76

Length Measure

Length needs to be understood from several perspectives: for example,
as magnitude, as a span, as the distance traveled, or as motion.77   Proficiency
in the measurement of length requires the learner to restructure space so that
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he or she “sees” a count of n adjacent unit lengths as representing a distance
of n units.  Children need to recognize the need for identical units, and they
need to understand that a unit can be partitioned into smaller units.78

Children’s first understanding of length measure involves the direct com-
parison of objects.79   They observe that two congruent objects can be put
side by side and shown to have the same length.  As early as first grade, chil-
dren typically understand that the lengths of two objects can be compared by
representing them with a string or paper strip.  First graders can also use
given units to find the length of different objects, and they associate higher
counts with longer objects.80   This apparent ease of counting, however, need
not imply understanding of length measure as a distance.  First and second
graders, for example, often fail to see the point of having identical units of
length measure.  They freely mix units such as inches and centimeters, count-
ing them all to “measure” a length.81

Given a measuring device such as a ruler, very few young children under-
stand that any point on the scale can serve as the starting point or origin, and
even many older children (e.g., fifth graders) respond to measurement with a
nonzero origin by simply reading off whatever number on a ruler aligns with
the other end of the object.82   These difficulties young children have in under-
standing length indicate that teachers cannot assume that their students under-
stand various aspects of the number line.  When the number line is used as a
pedagogical tool, efforts must be made to be sure that students understand
that they are counting lengths, not the endpoints where the numbers are.  In
a recent teaching experiment on measuring length, children used computer
tools that provided them experience with a unit and the repetition of units to
get a measurement.  The tools helped the children mentally restructure lengths
into units.83   In other studies, researchers have placed a premium on transi-
tions from active forms of length measure, like pacing, to recording and sym-
bolizing these forms as “foot strips” and other kinds of measurement tools.84

Tools like foot strips help children reason about the mathematically impor-
tant components of activity (e.g., pacing) so that invariants like unit are rep-
resented physically and then mentally.85   Although constructing and using
tools have a long tradition in teaching practice, recent teaching experiments
have shown ways in which these practices can contribute to conceptual
change.86
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Area Measure

The basic idea of measuring area is that of covering a region by units that
“just fit” (an idea that is sometimes called tiling).  In many ways the develop-
ment of area measure parallels that of length, but it lags behind.  First and
second graders often treat length measure as a surrogate for area measure.
For example, some children will measure the area of a square by measuring
the length of one side, moving the ruler parallel to itself a bit and measuring
the length again, and so on, treating length as a space-filling attribute.87   When
provided with geometric manipulatives (squares, right triangles, circles, and
rectangles) for use in finding the area measure of a variety of shapes, most
students in grades 1 to 3 freely mix units and then report the total count of
those units.

As they progress through the elementary grades, students usually begin
to differentiate area measure from length measure, and the space-filling (tiling)
requirement of the unit becomes more apparent to most of them.  Other
aspects of area measure, however, remain problematic.  Students find it very
difficult to decompose and then recompose shapes or even to see one shape
as a composition of others, an idea that is fundamental to conservation.88   For
example, students in grades 1 to 3 often cannot think of a rectangle as an
array of units.89

By the end of the elementary grades, students typically understand core
concepts like using identical units and covering the object for length mea-
sure but not for area measure.  Younger children often employ resemblance
as the prime criterion for selecting a unit of area measure, suggesting the
need for attention to the qualities of a unit that make it suitable for measur-
ing area.  The common instructional practice of declaring that the square is
the unit of area measure may lead to procedural competence but may violate
students’ preconceptions about what makes a unit suitable.

Teaching experiments with area measure have revealed that second
graders could develop a comprehensive understanding of area measure when
they began by solving problems involving partitioning and redistributing areas
without measuring.90   It is worth emphasizing that this approach makes con-
servation of area a fundamental construct rather than an afterthought.  Later,
when the children explored the suitability of different units (e.g., beans) for
finding the areas of irregular shapes like handprints, they found that units
like squares had desirable properties of space filling and identity.  By the end
of the school year, these children had little difficulty creating two-dimensional
arrays of units for rectangles and even for irregular (nonpolygonal) shapes.

Copyright © National Academy of Sciences. All rights reserved.



284 ADDING IT UP

Volume Measure

The measurement of volume presents some additional complexities for
reasoning about the structure of space, primarily because the units of mea-
sure must be defined and coordinated in three dimensions.  Although the
evolution of children’s conceptions of units of volume measure is not well
understood, an emerging body of work addresses strategies that children use
to measure a volume when given a unit.91

In one study, fifth graders who had a wide range of experience with rep-
resentations of volume and its measurement typically organized space into
three-dimensional arrays, and most could conceive of volume as a product of
area and height.92   Thus, traditional notions about how volume concepts
develop may need to be revised in light of the results from recent teaching
experiments.

Developing Geometric Reasoning

Early work on geometric reasoning suggested that proficiency in geometry
develops in a sequence of stages associated with age93  and that children can
be assisted, through appropriate activities, to move to more advanced levels
of reasoning.94   Recent work has confirmed the effectiveness of appropriate
activities even as it has called into question the notion of a stage-like
sequence.95

Reasoning About Shape and Form

Children enter school with a great deal of knowledge about shapes.  They
can identify circles quite accurately and squares fairly well as early as age
four.96   They are less accurate at recognizing triangles (about 60% correct)
and rectangles (about 50% correct).  Given conventional instruction, which
tends to elicit and verify this prior knowledge, children generally fail to make
much improvement in their knowledge of shapes from preschool through the
elementary grades.97

Instruction needs to build on students’ informal knowledge and move
beyond it.  For example, in one experiment, first graders were given a 10-day
instructional sequence to help them identify specific classes of quadrilaterals
and understand the relationships among the classes.98   They learned to arrange
the figures from the most to the least general members of the class (e.g., from
quadrilaterals to squares), to embed hierarchies in the names they gave to
shapes (e.g., “square-rectangles”), and to examine characteristics of the figures.
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Encouraged to reflect on and articulate their developing knowledge, the chil-
dren subsequently demonstrated levels of reasoning well beyond their earlier
performance, both in their precision of language and in their use of argu-
ments based on the properties of shapes rather than on visual comparison to
some prototypical shape.

In another study, fourth graders were encouraged to reflect on and articu-
late their ideas about concepts such as angle and line and also about relational
concepts, such as class inclusion among quadrilaterals.  One group of 16 stu-
dents received instruction with Logo, a computer programming language with
a feature called Turtle Geometry that allows children to instruct a turtle on
the screen to move, tracing a geometric path as it goes.  A second group of 16
students used traditional tools like protractors and rulers.  On a set of geometry
items from NAEP,99  the performance of both groups well exceeded the per-
formance by the high school students in NAEP.  Moreover, on measures of
abstracting and applying geometric properties for reasoning, the fourth graders
who had used Logo as a construction tool significantly outperformed their
contemporaries.100

Although previous work had suggested that children’s reasoning about
geometric figures is based on global appearances, primary school children in
one study101  routinely used a variety of attributes of shape and form to describe
how two shapes, in either two or three dimensions, were alike yet different
from a third shape.  Their judgments about shape and form revealed distinc-
tions that appeared to involve several distinct forms of mental operation, rang-
ing from simple feature detection (“it has four sides”), to comparison to known
prototypes (“it’s squarish”), to mental representation of the action-based
embodiment of transforming one form into another (“if you push the top of
this one [a parallelogram] to the side, it makes a rectangle”).  Mixture across
levels of reasoning was the rule, not the exception.

Concepts about shapes begin forming in the preschool years and stabilize
as early as age 6.102   Hence, if preschool provides sufficient opportunities for
children to learn about geometric figures, by the end of second grade they
should be able to “identify a wide range of examples and non-examples of a
wide range of geometric figures; classify, describe, draw, and visualize shapes;
and describe and compare shapes based on their attributes.”103

Although they have considerable experience with three-dimensional
objects, students are less proficient with three-dimensional geometric shapes
than they are with two-dimensional ones.  Even intermediate-grade students
have difficulty naming solids, using names of plane figures instead.104   In
reasoning about solids, they refer to a variety of characteristics, such as

Copyright © National Academy of Sciences. All rights reserved.



286 ADDING IT UP

“pointyness” or slenderness.105   Studying only plane figures in the early grades
may be responsible for some of the difficulty students have in discriminating
between the terms for two- and three-dimensional figures.  Construction
activities involving foldout shapes of solids may help students make such
discriminations.106   Other promising activities need to be developed and
investigated.

An important and difficult geometric figure for students to understand
and be able to use is the angle.  In the course of schooling, students need to
encounter multiple mathematical conceptions of angle,107  including: (a) angle
as movement, as in rotation or sweep; (b) angle as a geometric shape, a delin-
eation of space by two intersecting lines; and (c) angle as a measure, a per-
spective that encompasses the other two.108  Although as preschoolers, they
encounter and use angles intuitively in their play, children have many mis-
conceptions about angles.  They typically believe that angle measures are
influenced by the lengths of the intersecting lines or by the angle’s orienta-
tion in space.109   The latter conception decreases with age, but the former is
robust at every age.110   Some researchers have suggested that students in the
elementary grades should develop separate mental models of angle as move-
ment and angle as shape.111

There is some research on instructional approaches that attempt to develop
the two models of angles.  With appropriate instruction, Logo’s Turtle
Geometry can support the development of measures of rotations.112   The
students, however, rarely connected these rotations to models of the space in
the interior of figures traced by the turtle.113   Simple modifications to Logo
helped students perceive the relationship between turns and traces (the path
made by Logo’s turtle), and the students could then use turns to measure
static intersections of lines.114   Another approach used multiple concrete analo-
gies such as turns, slopes, meetings, bends, directions, corners, and openings
to help children develop general angle concepts by recognizing common fea-
tures of these situations.115   Other research took as the starting point children’s
experience with physical rotations, especially rotations of their own bodies.116

In time, students were able to assign numbers to certain turns and integrate
turn-as-body-motion with turn-as-number.

An understanding of angle requires novel forms of mental structuring,
the coordination of several potential models, and an integration of those
models.  The long developmental process is best begun in the early grades.
Common admonitions to teach angles as turns run the risk of students devel-
oping only one concept of angle since they rarely spontaneously relate situa-
tions involving rotations to those involving shape and form.
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In several studies of instruction in space and geometry,117  teachers have
posed challenging tasks (e.g., design a playground), engaged students in math-
ematical explanation and justification, and provided computer tools (e.g.,
Sketchpad,118  Logo) and related means (e.g., Polydrons119 ) for reasoning about
space.  The emerging portrait of mathematical reasoning in these contexts
suggests that children’s conceptions of shape and form can encompass fairly
sophisticated mathematical understanding.

Reasoning About More Advanced Concepts

During the last decade, studies of geometry learning have focused less
exclusively on shape and form, although conceptions of form are still a promi-
nent topic.  Related ideas like congruence, symmetry, similarity, and transfor-
mation have received more systematic attention in recent studies.  Begin-
ning as early as age 4, children can create and use strategies for judging whether
two figures are the same size and shape.120   By about first grade they can
develop sophisticated and accurate mathematical procedures for determin-
ing congruence.

Children also have intuitive notions of symmetry from a very early age,
preferring symmetric figures over asymmetrical ones.121   Vertical bilateral sym-
metry, in particular, seems to be easier for children to identify than horizontal
symmetry.122   Young children can identify similar shapes in certain situations.
They can verify their identifications using an overhead projector,123  and they
can use computers to create similar figures.124

The findings are mixed regarding children’s ability with geometric
motions.  In one study, second graders could perform transformations manu-
ally but not mentally.125   In contrast, other researchers found that children do
learn something about these motions and appear to internalize them.126   Slides
appear to be the easiest motion, followed by flips and turns, although the
difficulty depends on the specific task.127   Computer environments can be
particularly useful in helping students develop proficiency with congruence,
similarity, symmetry, and transformations.128

Several researchers have looked at the effects of introducing children to
ideas about modeling space.  In these studies, middle school students made
significant progress in developing their conceptions of proportion and scale
when they used a computer-assisted-drawing (CAD) tool to map their class-
room129  or designed a playground and its equipment.130   Modeling of space
can be done by primary grade children as well.  For example, first graders
learned about properties of shapes as they searched for a configuration of
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players (ultimately a circle) that would be “fair” (equidistant) in a classroom
game of tag.131

Some research has focused on relationships between spatial models and
learning about science.  For example, middle school students’ understanding
of area and volume measure was found to make a significant contribution to
their understanding of concepts like buoyancy,132  and the idea of similarity in
substance helped in developing their understanding of similarity of shapes.133

Engineering problems involving stability have also been employed to help
middle school students understand the relationship between geometry and
the success or failure of architectural structures.134

Collectively, research on geometry points the way to a significant expan-
sion of what is meant by the study of shape and form in school mathematics.
Children enter school with much informal knowledge of geometry that can
be developed throughout the grades.  Given children’s affinity toward, knowl-
edge of, and ability to gain geometric knowledge, it is important that this
domain of mathematics not be neglected.  Instruction in geometry needs to
complement the study of number and operation in grades pre-K to 8.

Statistics and Probability

In the elementary and middle grades, the domains of statistics and prob-
ability are often referred to as the study of data and chance.  Research in
these two domains is less extensive than that in number and operation, in
algebra, or in measurement and geometry.  But like measurement and
geometry, many of the central conceptual structures of statistics and prob-
ability have been identified, especially with respect to school mathematics in
grades pre-K to 8. 135

Learning to Use Data

Although the graphing of data is a common activity in grades pre-K to 8
and has been the focus of some investigations, recent research into students’
statistical thinking at the elementary and middle school grades has adopted a
broader perspective.  Four key processes have been studied: describing,
organizing, representing, and analyzing data.136   We consider research on each
of these processes in turn, starting with a definition of the process.
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Describing Data

Describing data involves reading displays of data (e.g., tables, lists, graphs);
that is, finding information explicitly stated in the display, recognizing graphi-
cal conventions, and making direct connections between the original data
and the display.  The process is essentially what has been called reading the
data,137  and researchers have found that the majority of students in the
elementary and middle school grades can read data displays accurately.138

Although children in the primary grades often give idiosyncratic descriptions
of data, explorations with categorical and numerical data in instruction that
incorporates technology produce more focused and less idiosyncratic descrip-
tions.139

Organizing Data

The process of organizing, and reducing, data incorporates mental ac-
tions such as ordering, grouping, and summarizing.140   Data reduction also
includes the use of representative measures of center (often termed measures
of central tendency) such as mean, mode, or median, and measures of spread
such as range or standard deviation.  Research on organizing data at grades
pre-K to 8 is quite limited.

Most of the available research on data reduction by elementary school
students has focused on their understanding of measures of center, particu-
larly the mean.  The most familiar measure of center is the mean, which is
computed by adding up all the data values and dividing by the number of
values.  The median is the middle value when the data are sorted (or the
mean of the two middle values).  The mode is the most common data value.
All of these measures of center are called “averages” for some kinds of data.
With housing prices and incomes, for example, the preferred average is the
median because the mean is easily skewed by a few very high incomes, giv-
ing a false impression of income for an “average” or typical family.  With
clothing sizes, the preferred average is the mode because it gives the best
impression of the typical buyer.

First and second graders have informal conceptions of mode and median
as measures of center, and they also have some conception of spread.141   Most
elementary school students understand that the mean is located between
extreme values.142   Nearly all realize that the mean is influenced by values in
the data set and that the mean does not necessarily equal one of the actual
data values.  In a study of fourth, sixth, and eighth graders’ concept of aver-
age, the younger students interpreted the average as the mode.143   Although
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the researchers claimed that these students did not see the data set as an
entity that can be represented by a single value, an alternative interpretation
is that the students used the mode because it is so easily identified in a
graph.144   Some students consider the average to be a data point roughly
centered within the data, that is, they conceptualize average as median.145

Students in the primary grades seem not to have the idea of center as a math-
ematical point of balance, a vital characteristic of the mean.  They cannot use
an algorithmic procedure to find the mean, let alone create a data set given
the mean.146   Different measures of center appear to be important for differ-
ent students; all need eventually to understand the different measures and
their purposes.

Representing Data

Representing data in visual displays requires the generation of different
organizations of data according to certain conventions.  Many elementary stu-
dents have difficulty creating visual displays of data.147   First and second
graders’ knowledge of how to represent data appears to be constrained by
difficulties in sorting and organizing data, and technology has been found to
be helpful in overcoming those difficulties.148

Studies of middle school students have revealed substantial gaps in their
abilities to construct graphs from given data.149   Processes like organizing
data and conventions like labeling and scaling are crucial to data representa-
tion and are strongly connected to the concepts and processes of measure-
ment.  Given the difficulties students experience, instruction might need to
differentiate these processes and conventions more sharply and utilize the
potential of technology to make them more accessible to students.

Analyzing Data

The process of analyzing, and interpreting, data incorporates recognizing
patterns and trends in data and making inferences and predictions from the
data.  It includes what has been referred to as reading between the data and
reading beyond the data.150   Reading between the data requires students to
compare quantities and use mathematical operations to combine and inte-
grate data and to identify mathematical relationships expressed in the data or
in visual representations of the data.  Reading beyond the data requires
students to make predictions or inferences from the data that are neither
explicitly nor implicitly stated in the visual representation.
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Elementary school students have difficulty analyzing and interpreting
data.  In one study, 80% of the first and second graders interviewed gave
idiosyncratic or incomplete responses when they attempted to analyze data
from a line plot and a bar graph.151   In another study, almost all the fourth and
sixth graders could describe bar graphs, but fewer could interpret them, and
many fewer still could use the graphs to predict.152

Learning About Chance

Although there has been substantial research on students’ probabilistic
thinking over the past 50 years by both psychologists153  and mathematics
educators,154  only recently has students’ learning about chance been exam-
ined with a view toward informing instruction.  In this section, we examine
what is known about students’ probabilistic thinking about five key concepts:
sample space, probability of an event, probability comparisons, conditional
probability, and independence.155

Sample Space

Students exhibit an understanding of sample space when they are able to
identify the complete set of possible outcomes in a random experiment, an
experiment in which the actual outcome cannot be determined ahead of time
even though the set of possible outcomes can be determined.  When two
coins are flipped, for example, the possible outcomes may be represented as
HH, HT, TH, and TT.

Several studies have addressed children’s thinking about sample space.156

Recent research has concluded that a substantial number of students in grades
1 through 3 are not able to list the outcomes of a one-dimensional experiment
(such as rolling a single die) even after instruction.157   The students in these
studies adopted a deterministic posture, maintaining that it was “always”
possible to predict a particular outcome.  The situation with respect to two-
dimensional experiments (such as rolling two dice) is also problematic.
Although some children as young as seven years can use efficient procedures
for listing all outcomes,158  other children in grades 4 through 6 are reluctant
or unable to list them all.159

Probability of an Event

Although probability tasks used in research with elementary and middle
school students have typically involved equally likely outcomes, a number of
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researchers have investigated children’s probabilistic thinking about unequally
likely events.160   In comparing event probabilities, students commit them-
selves to one of three strategies: (a) a numerator strategy in which they only
examine the part that corresponds to the event; (b) an “incomplete” denomi-
nator strategy in which they examine the part that corresponds to the comple-
ment of the event; and (c) an integrating strategy in which they recognize the
moderating effect that each part has on the other.161   In a recent study that
incorporated instruction, the kind of reasoning that third graders used was
fundamental to their quantifying probability situations in a meaningful way.162

Overall, comparisons of event probabilities are difficult for students and seem
to be linked to their proficiency with rational numbers.

Probability Comparisons Across Sample Spaces

Students’ understanding of probability comparisons is measured by their
ability to determine and justify which of two probability situations is more
likely to generate the target event in a random draw.  For example, given a
bag with 2 red and 2 blue bears and another with 3 red and 4 blue, they might
be asked, “Which bag would give the better chance of getting a red bear?”
Researchers have found that elementary and middle school students use both
intuitive and informal quantitative strategies for comparing the probabilities
of the target event.163   In one seminal study the three incorrect strategies
used by students in grades 1 through 5 involved choosing the probability
situation with: (a) more instances corresponding to the target event; (b) fewer
instances corresponding to the nontarget event; and (c) a greater difference
(as opposed to greater ratio) of instances favoring the target event.164

Conditional Probability

A number of studies have addressed elementary and middle school stu-
dents’ thinking in conditional probability situations—their ability to recog-
nize when the probability of an event is or is not changed by the occurrence
of another event.165   For example, the conditional probability of drawing a
white ball, given that you have already drawn and not replaced a white ball
from a bag containing three white balls and three red balls, is 0.4, not 0.5.
When fifth, sixth, and seventh graders were asked to determine conditional
probabilities, the performance of the sixth and seventh graders was dramati-
cally lower when the tasks involved selection without replacement compared
with selection with replacement.166   Similar results were found in a study167

with students in grades 6 through 8.  In a study with third graders, several
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levels of thinking in conditional probability were identified, with few chil-
dren being able to recognize that the probabilities changed in situations of
selection without replacement.  Following instruction, 51% were able to rec-
ognize that conditional probabilities changed in these situations.168   Children
have difficulty determining the conditioning event and may be confused about
the context of a conditional probability problem.

Independence

Students’ intuitive understanding of independence is measured by their
ability to recognize and justify when the occurrence of one event has no
influence on the occurrence of another.  In one study, students in grades 4
through 8 were asked to determine which event was more likely: obtaining 3
heads by tossing one coin 3 times, or by tossing 3 coins simultaneously.169

Some 38% of fourth and fifth graders and 30% of seventh and eighth graders
with no prior instruction in probability responded that the probabilities were
not equal.  Follow-up interviews revealed that these students harbored the
pervasive misconception that the outcomes of a coin toss can be controlled.
Similar misconceptions were evident in other studies of middle school
students.170   Misconceptions of the kind illustrated above have been charac-
terized more generally as representativeness—a belief that a sample or sequence
of outcomes should reflect the whole population.171

From Arithmetic to Mathematics

As children move from number to other domains of mathematics, they
both use their proficiency with number and develop it further.  The school
mathematics curriculum, although separated into domains for the purposes
of this report, needs to be experienced by the learner as a unified whole.

In general, the arithmetic thinking of number-proficient students emerg-
ing from the typical elementary school mathematics program is different from
the thinking that is central to algebra.  Some of the conceptual understanding
of the arithmetic thinker requires an adjustment when the student engages
in the main types of activities in algebra.  Whereas arithmetic focuses on
number and numerical answers, school algebra focuses on relations.  Algebra
remains, however, a natural extension of arithmetic.  Students’ numerical
thinking can therefore continue to grow and develop into algebraic thinking,
but their numerical thinking habits must be taken into account.

Just as current research has influenced conceptions of algebra in the early
grades, the nature of school algebra in higher grades has likewise been evolv-

Copyright © National Academy of Sciences. All rights reserved.



294 ADDING IT UP

ing.  Over the past two decades, computational tools have increasingly influ-
enced the kinds of transformations that are important to learn, the kinds of
representations, especially graphical ones, that are readily accessible, and the
kinds of applications of mathematics that are appropriate to address.  One of
the biggest shifts has been to emphasize the ideas of pattern, function, and
variation.172   This new focus is particularly amenable to approaches that begin
in the elementary grades and continue through middle school, and a sizable
body of instructional materials has been developed that reflects this empha-
sis.173   But the long-term impact of these materials is as yet unknown.

Recent research on measurement and geometry suggests that children’s
development of geometric reasoning can be greatly enhanced in instructional
environments that are specifically designed to promote such understanding
and that children’s thinking may fluctuate across stages identified by earlier
researchers.  Furthermore, computer technologies offer the promise of being
able to support developing understanding in ways not available before.

Unlike the domains of measurement and geometry, research on the devel-
opment of concepts of statistics and probability indicates that, especially for
probability, very young children are capable of less than developmental
theories might predict.  Fundamental concepts in both domains, such as the
conventions of scaling in graphs and the makeup of the sample space, need
more careful attention in initial instruction.  As in the areas of measurement
and geometry, technology offers promise for helping to support and link stu-
dents’ developing conceptions of data and chance.  It is still an open question
when and how many of the central conceptual structures of probability and
statistics should be introduced in the elementary and middle grades.
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9
TEACHING FOR

MATHEMATICAL PROFICIENCY

Previous chapters have described mathematical proficiency as the inte-
grated attainment of conceptual understanding, procedural fluency, strategic
competence, adaptive reasoning, and productive disposition.  Effective forms
of instruction attend to all these strands of mathematical proficiency.  In this
chapter we turn from considering what there is to learn and what is known
about learning to an examination of teaching that promotes learning over time
so that it yields mathematical proficiency.

Instruction as Interaction

Our examination of teaching focuses not just on what teachers do but
also on the interactions among teachers and students around content.1   Rather than
considering only the teacher and what the teacher does as a source of teaching
and learning, we view the teaching and learning of mathematics as the prod-
uct of interactions among the teacher, the students, and the mathematics in
an instructional triangle (see Box 9-1).

Certainly the knowledge, beliefs, decisions, and actions of teachers affect
what is taught and ultimately learned.  But students’ expectations, knowl-
edge, interests, and responses also play a crucial role in shaping what is taught
and learned.  For instruction to be effective, students must have, perceive,
and use their opportunities to learn.  The particular mathematical content
and its representation in instructional tasks and curriculum materials also
matter for teachers’ and students’ work, but teachers and students vary in
their interpretations and uses of the same content and of the same curricular
resources.  Students interpret and respond differently to the same mathemati-

We view the
teaching and
learning of
mathematics
as the
product of
interactions
among the
teacher, the
students,
and the
mathematics.
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Box 9-1

The Instructional Triangle:
Instruction as the Interaction Among Teachers,
Students, and Mathematics, in Contexts

SOURCE: Adapted from Cohen and Ball, 1999, 2000, in press.

teacher

students
mathematics

students

contexts

contexts

cal task, ask different questions, and complete the work in different ways.
Their interpretations and actions affect what becomes the enacted lesson.
Teachers’ attention and responses to students further shape the course of
instruction.  Some teachers may not notice how students are interpreting the
content, others may notice but not investigate further, and still others may
notice and respond by reiterating their own interpretation.

Moreover, instruction takes place in contexts.  By contexts we mean the
wide range of environmental and situational elements that bear on instruc-
tion—for instance, educational policies, assessments of students and teachers,
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school organizational structures, school leadership characteristics, the nature
and organization of teachers’ work, and the social matrix in which the school
is embedded.  These matter principally as they permeate instruction—that
is, whether and how they enter into the interactions among teachers, stu-
dents, and content.2   Hence, what goes on in classrooms to promote the
development of mathematical proficiency is best understood through an
examination of how these elements—teachers, students, content—interact
in contexts to produce teaching and learning.

Much debate centers on forms and approaches to teaching: “direct
instruction” versus “inquiry,” “teacher centered” versus “student centered,”
“traditional” versus “reform.”  These labels make rhetorical distinctions that
often miss the point regarding the quality of instruction.  Our review of the
research makes plain that the effectiveness of mathematics teaching and learn-
ing does not rest in simple labels.  Rather, the quality of instruction is a func-
tion of teachers’ knowledge and use of mathematical content, teachers’
attention to and handling of students, and students’ engagement in and use
of mathematical tasks.  Moreover, effective teaching—teaching that fosters
the development of mathematical proficiency over time—can take a variety
of forms.  To highlight this point, we use excerpts from four classroom lessons
and analyze what we see going on in them in light of what we know from
research on teaching.

Four Classroom Vignettes

The pedagogical challenge for teachers is to manage instruction in ways
that help particular students develop mathematical proficiency.  High-quality
instruction, in whatever form it comes, focuses on important mathematical
content, represented and developed with integrity.  It takes sensitive account
of students’ current knowledge and ways of thinking as well as ways in which
those develop.  Such instruction is effective with a range of students and over
time develops the knowledge, skills, abilities, and inclinations that we term
mathematical proficiency.

The four classroom vignettes we present below offer four distinct images
of what mathematics instruction can look like.  Each vignette configures dif-
ferently the mathematical content and the roles and work of teachers and
students in contexts; hence, each produces different opportunities for math-
ematics teaching and learning.  Two points are important to interpreting and
using these vignettes.  First, to provide a close view, each vignette zooms in
on an individual lesson.  Effective instruction, however, depends on the
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coherent connection over time among lessons designed collectively to achieve
important mathematical goals.  For example, some of these teachers may be
attempting to develop students’ productive disposition toward mathematics
and as mathematics learners, but it is difficult to pinpoint isolated attempts in
a single lesson since that development takes place gradually—over months
rather than minutes.  Second, rather than seeking to argue that one of these
lessons is “right,” our analysis probes the possibilities and the risks each affords.
The instructional challenge in any approach to teaching and learning is to
capitalize on its opportunities and ward off its pitfalls.

The first example (Box 9-2) is typical of much teaching that many Ameri-
can adults remember from their own experience in mathematics classes.3   Note
how the teacher, Mr. Angelo, constructs the lesson in a way that structures
the students’ path through the mathematics by tightly constraining both the
content and his students’ encounters with it.  The approach used by
Mr. Angelo structures and focuses students’ attention on a specific aspect of
the topic: multiplying by powers of 10.  He has distilled the content into an
integrated “rule” that his students can use for all instances of multiplication
by powers of 10.

Box 9-2

Mr. Angelo—
Teaching Eighth Graders About Multiplying
by Powers of 10

After a conducting a short warm-up activity and checking a homework assignment
that focused on multiplying by 10, Mr. Angelo announces that the class is going to
work on multiplying by powers of 10.  He is concerned that students tend to per-
form poorly on this topic on the spring tests given by the school district, and he
wants to make sure that his students know what to do.  He reviews briefly the idea
of powers of 10 by showing that 100 equals 102, 1000 equals 103, and so on.  Going
to the overhead projector, he writes the following:

4 × 10 = 45 × 100 = 450 × 100 =

“Who knows the first one?” Mr. Angelo asks.  “Luis?”  “Forty,” replies Luis.  Nod-
ding, Mr. Angelo points to the second, “And this one?”  Sonja near the front offers,
“Forty-five hundred.”  “That’s right—forty-five hundred,” affirms Mr. Angelo, and
he writes the number on the overhead transparency.  “And what about the last
one?” he asks.  “Forty-five thousand,” call out several students.
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Writing “45,000,” Mr. Angelo says, “Good, you are all seeing the trick.  What is it?
Who can say it?”

Several hands shoot into the air.  Ethel says, “You just add the same number of
zeros as are all together in the number and in the number you are multiplying by.
Easy.”  “Right,” says Mr. Angelo.  “Let’s try some more and see if you are getting it.”

He writes three more examples:

30 × 70 = 40 × 600 = 45 × 6000 =

“So who can do these?” he asks, looking over the students.  “What’s the first
one?”  “Three hundred!” announces Robert, confidently.  Mr. Angelo pauses and
looks at the other students.  “Who can tell Robert what he did wrong?”

There is a moment of silence and then Susan raises her hand, a bit hesitantly.  “I
think it should be twenty-one hundred,” she says.  “You have to multiply both the
3 and the 7, too, in ones like this.  So 3 times 7 is 21, and then add two zeros—one
from the 30 and one from the 70.”  “Good!” replies Mr. Angelo.  “Susan reminded
us of something important for our trick.  It’s not just about adding the right number
of zeros.  You also have to look to see whether the number you are multiplying by
begins with something other than a 1, and if it does, you have to multiply by that
number first and then add the zeros.”  He writes 2100 after the equals sign and
continues with the remaining examples.

Mr. Angelo writes another three examples on the overhead:

4.5 × 0.1 = 4.5 × 0.01 = 4.5 × 0.001=

“I wonder whether I can fool you.  Now we are going to multiply by decimals that
are also powers of 10: one tenth, one hundredth, one thousandth, and so on.  We’ll
do easy ones to start.”  Who knows the first one?” he asks.  “Luis?”  “Point four
five,” replies Luis.  Nodding, Mr. Angelo rephrases Luis’s answer: “Forty-five hun-
dredths.”  He then points to the second, “How about this one?”  Nadya responds,
“Point zero four five,” almost inaudibly.  “That’s right.  Forty-five thousandths,”
Mr. Angelo affirms, and he writes the number on the overhead.  “And what about
the last one?”  “Point zero zero forty-five,” responds the girl near the front again.

Mr. Angelo writes “0.0045” and says, “Good, does anyone see the rule.  Who can
say it?”

After a long pause, one hand in the back goes up.  “You just move the decimal
point.”

continued
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“Right,” says Mr. Angelo.  “You move the decimal point to the left as many places
as there are in the multiplier.*  But think now.  What did we decide happens to the
product when we multiply a decimal by 10, 100, or 1,000?  These are the powers of
10 that are greater than one, right?”

This time several hands go up.

“You just add the same number of zeros to the end of the number as are in the
number you are multiplying by.”

“Okay, that is what we said.  But now we are ready for a better rule now that we
have looked at some powers of 10 that are less than one.  They are numbers like
one tenth, one hundredth, one thousandth, and so on.  Instead of having two com-
pletely different rules, it is better to have one good rule.  And here it is.  Listen
carefully:

“When you multiply by a power of 10 that is greater than one, you move the deci-
mal point to the right as many places as the number of zeros in the multiplier.
When you multiply by a power of 10 that is less than one, you move the decimal
point to the left as many places as there are in the multiplier.”

Mr. Angelo illustrates the movement of the decimal point with a colored pen.  He
explains, “You can remember which way to move the decimal point if you remem-
ber that multiplying by a number greater than one makes the product bigger and
multiplying by a number less than one makes the product smaller.  Right makes
bigger, left makes smaller.”

“Let’s practice this a bit now and get it under our belts.”  Mr. Angelo passes out a
worksheet with 40 exercises that resemble what was done in class.  He goes over
the first exercise to make sure his students remember what to do.  While the students
work, Mr. Angelo circulates around the room, answering questions and giving hints.
The students make a variety of computational errors, but most seem able to use
the rule correctly.  Mr. Angelo is pleased with the outcome of his lesson.

* Mr. Angelo is referring to the number of places between the decimal point and
the last nonzero digit in the multiplier.  Strictly speaking the first factor in a product
is the multiplier.  But because of the commutative property, Mr. Angelo uses the
term for whichever factor he wishes to focus on.

Box 9-2 Continued
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This lesson focuses on mathematical procedures for multiplying by powers
of 10.  Mr. Angelo designs the work to progress from simple examples
(multiplying by 10, 100, and 1,000), to more complex ones (multiplying by
multiples of powers of 10), to multiplying by powers of 10 less than one.4  He
stages the examples so that the procedure he is trying to teach covers more
and more cases, thus leading to a more general rule usable for multiplication
by any power of 10 other than 100 = 1.

Mr. Angelo asks brief questions to engage students in the steps he is
taking.  By giving the students a rule, he simplifies their learning, heading off
frustration and making getting the right answer the point—and likely to be
attained.  Concerned about the spring testing, he attempts to ensure that his
students develop a solid grasp of the procedure and can use it reliably.  He is
careful to connect what are often two disjointed fragments: a rule for adding
zeros when multiplying by powers of 10 greater than one and a different rule
for moving the decimal point when multiplying by powers of 10 less than
one.

Although Mr. Angelo integrates these two “rules,” he does not work in
the underlying conceptual territory.  He does not, for example, explain why,
for problems such as 30 × 70 = ?, students multiply the 3 and the 7.  He might
have shown them that 30 × 70 = 3 × 10 × 7 × 10 and that, using associativity
and commutativity, one can multiply 3 by 7 and then multiply that product
by 10 times 10, or 100.  Instead, he skips this opportunity to help the proce-
dure make sense and instead adds an extra twist to the rule.  He also does not
show his students what they are doing when they “move the decimal point.”
In fact, of course, one does not “move” the decimal point.  Instead, when a
number is multiplied by a power of 10 other than one, each digit can be thought
of as shifting into a new decimal place.  For example, since .05 is one tenth
times .5, in .5 × 10-1 = ?, the 5 can be thought of as shifting one place to the
right—to the hundredths place, which is one tenth of one tenth.  If a 5 is in
the tens place, then multiplying by 10 shifts it to the left one place, to the
hundreds place: What was 50 is now 500.  Describing these changes in terms
of “adding zeros” or “moving the decimal point” stays at the surface level of
changes in written symbols and does not go beneath to the numbers them-
selves and what it means to multiply them.  Students miss an opportunity to
see and use the power of place-value notation: that the placement of digits in
a numeral determines their value.  A 5 in the tens place equals 50; in the
hundredths place, 0.05; and in the ones place, 5.  Mr. Angelo offers his stu-
dents an effective and mathematically justifiable rule, but he does so without
exploring its conceptual underpinnings.
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In lessons such as Mr. Angelo’s, mathematics entails following rules and
practicing procedures, often with little attention to the underlying concepts.5

Procedural fluency is given central attention.  Adaptive reasoning is not
Mr. Angelo’s goal: He does not offer a justification for the rule he is teaching,
nor does he engage students in reasoning about the structure of the place-
value notation system that is its foundation.  He focuses instead on ensuring
that they can use it correctly.  Other aspects of mathematical proficiency are
also not on his agenda.  Instead, Mr. Angelo has a clear purpose for the lesson,
and to accomplish that purpose he controls its pace and content.  Students
speak only in response to closed questions calling for a short answer, and
students do not interact with one another.  When a student gets an answer
wrong, Mr. Angelo signals that immediately and asks someone else to pro-
vide the correct answer.  The lesson is paced quickly.

We turn now to our second teacher, Ms. Lawrence, who is working with
her fifth graders on adding fractions (Box 9-3).  Ms. Lawrence’s goals are
different from Mr. Angelo’s.  Although she also structures the lesson to
accomplish her goals, unlike Mr. Angelo, she emphasizes explanation and
reasoning along with procedures.  The pace of the lesson is carefully con-
trolled to allow students time to think but with enough momentum to en-
gage and maintain their interest.

Box 9-3

Ms. Lawrence—
Teaching Fifth Graders About Adding Fractions

After a few minutes in which the class does mental computation to warm up, Ms.
Lawrence reviews equivalent fractions by asking the students to provide other
names for 3

5 .  She asks the class what fractions are called that “name the same
number.”  On the chalkboard she writes a problem involving the addition of frac-
tions with like denominators:

3
8

4
8

+ =

She asks the students how to find the sum.  One student, Betsy, volunteers that
you just add the numerators and write the sum over the denominator.  “Why does
this work?” Ms. Lawrence asks.  She asks Betsy to go to the board and explain.
Confidently, Betsy draws two pie diagrams, one for each fraction, and explains
that the denominator tells the size of the pieces and the numerators how many
pieces all together:
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In response, Ms. Lawrence poses another problem, this time involving unlike de-
nominators: 2

3  + 1
4  = ?  “How would we find the sum of these two?” she asks.

Stepping back, she gives the students a chance to think.  She then asks whether
the sum would be less than or greater than 1.  Several students raised their hands,
eager to respond.  Ms. Lawrence calls on Susan, who explains that the sum would
be less than 1 because 1

4  is less than 1
3  and 2

3  + 1
3  equals exactly 1.

Ms. Lawrence then asks how you could find the exact sum.  Jim raises his hand
and offers 8

12  and 3
12  as equivalent fractions with a common denominator.  Ms.

Lawrence writes on the chalkboard as Jim dictates:

2
3

1
4

8
12

3
12

8 3
12

11
12

+ = + =
+( )

=

8
12

3
12

11
12

+ =

She asks Jim why he chose 12 as the common denominator.  “Twelve is the small-
est number that both 3 and 4 go into,” replies Jim.  “How did you come up with
that?” Ms. Lawrence asks.  “By multiplying 3 and 4,” he answers.

Ms. Lawrence turns to the class.  “Let’s take a closer look.  Jim got the equivalent
fractions by multiplying the numerator and denominator of each fraction by the
denominator of the other fraction.  So if we show all the steps, it looks like this.”
She then reworks the problem to make her point, justifying each step by giving a
property of the rational numbers:

2
3

1
4

2 4

3 4

1 3

4 3

2 4 1 3

3 4

8 3
12

11
12

+ =
×( )
×( ) +

×( )
×( ) =

×( ) + ×( )
×( ) =

+( )
=

Ms. Lawrence stops and looks at the students.  “How do we know that what Jim
did makes sense?  How do we know that he is adding the same fractions as in the
original problem: 2

3  and 1
4 ?  This is really important.  Maybe he has just added

two other fractions.”

3
8

4
8

continued
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“Oh!” exclaims Lucia.  “I know! Two thirds is equivalent to eight twelfths.  We
could show that with a picture like what Betsy drew for three eighths and four
eighths.  If we draw two thirds on a pie that has three pieces, those two pieces will
actually make eight pieces on that same pie if it’s divided into 12.  But the eight
pieces, eight twelfths, will equal the same total amount of pie as two pieces that
are each one third of the pie.”  She pauses, and beams, looking at Ms. Lawrence
expectantly.  “Is that right?”

“Yes, you explained it well,” says Ms. Lawrence.  “Can someone come up and
make pictures to show what Lucia just said?”

Several hands go up, and Ms. Lawrence picks Nicole, who comes to the board and
represents accurately what Lucia said.  Ms. Lawrence makes a few additional
remarks to make sure that all the students understand.

Ms. Lawrence continues with three more examples, showing all the steps in each.
She then asks the students to generalize the process by writing “a rule that would
work for any two fractions.”  Several students volunteer a verbal rule.  “Let’s try
this out on a couple of less obvious examples,” she says, writing on the overhead
projector:

3
8

4
15

+ = 7
16

11
24

+ =

Ms. Lawrence asks the students to work on these problems in pairs.  As the students
work, she walks around, listening, observing, and answering questions.  Satisfied
that the students seem to understand and are able to carry out the procedure, she
assigns a page from their textbook for practice.  The assignment contains a mix-
ture of problems in adding fractions, including some fractions that already have
like denominators and many that do not, and in adding whole numbers as well as
several word problems.

Ms. Lawrence wants the practice that she provides to require the students to think
and not merely follow the algorithm blindly.  She believes that this way of working
will equip them well for the standardized test her district administers in April and
the basic skills test they have to take at the beginning of sixth grade.  She expects
the students to remember the procedure because they have had opportunities to
learn why it makes sense.  She knows that this approach is understandable to her
students’ parents, while at the same time she is stretching them beyond what
some have been demanding—a solid focus on basic skills.  She feels comfortable
with the balance she has struck on these issues.

SOURCE: This vignette was constructed to embody the principles from Good,
Grouws, and Ebmeier, 1983.

Box 9-3 Continued
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In this lesson, Ms. Lawrence is trying to develop her students’ ability to
add fractions with like or unlike denominators.  She wants them to under-
stand how to convert fractions to fractions with the same denominator and
add them, and to have a reliable procedure for doing so.  She also wants them
to understand why the procedure works.  Her lesson is designed to engage
the students actively in the conceptual and procedural development of the
topic.  She begins by reviewing equivalent fractions, a concept both familiar
and necessary for the new work.  She poses a variety of questions and expects
the students to explain their reasoning.  She does not stop with well-articulated
statements of the procedure but demands explanation and connection to the
underlying meaning.  She seeks to make the procedure make sense by asking
for and providing explanations.

In this lesson, time is spent in a variety of ways to address Ms. Lawrence’s
goals: The students spend time practicing mental computation, developing a
general rule for adding fractions, explaining and making sense of others’
explanations, and working with a partner to practice on more complex
examples of what they were learning.  The lesson proceeds at a steady pace,
but one that affords time for developing the ideas.  Ms. Lawrence checks to
see whether the students are understanding before she assigns them inde-
pendent work, and the assignment mixes familiar and extension problems to
help strengthen students’ proficient command of the content.  Although the
focus of the lesson is not on strategic competence, when she asks students to
estimate the sum of two fractions, she is helping them become sensitive to
strategies they might use.

Our third teacher, Mr. Hernandez, is working on making and linking dif-
ferent representations of rational numbers (Box 9-4).  He works hard to engage
all his students in active work on the mathematics.  Toward that end, he asks
challenging questions that allow for a variety of solutions, and he expects the
students to push themselves.  He is conscious of the district and state basic
skills assessments, but he has concluded that if he invests in this sort of work
with his students, it pays off in their preparedness for the test.  Occasionally,
he finds that the approach is not working for some of his students, and he
seeks ways to build their skills more solidly.  He worries a bit, since the parents
have been quite vocal in his school, with much pressure about getting students
to algebra in eighth grade.  He takes a strong stand on the importance of
developing a solid foundation with number and representation, particularly
with rational numbers.

This lesson is different from either Mr. Angelo’s or Ms. Lawrence’s.
Mr. Hernandez has selected a task that draws on students’ past experience
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Box 9-4

Mr. Hernandez—
Teaching Seventh Graders About Representations of
Rational Numbers

Mr. Hernandez presents his seventh graders with a set of rectangular grids of various
sizes.  He lists specified portions of these areas—as a percentage of the total, a
fraction of the total, a decimal fraction of the total, or a specific number of squares—
and the students are to shade that portion.  For each region shaded, he asks them
to give a fraction, a decimal, or a percent to represent the shaded part of the total
area.  After working on the problems alone, the students are expected to be able to
explain their strategies to the rest of the class.

After the students have had a chance to work on the task for about 15 minutes,
Mr. Hernandez calls on Michelle to do the first problem at the overhead projector:

Shade .725 of the area of an 8-by-10 grid

Drawing a grid on the transparency, Michelle incorrectly shades 72.5 of the 80
squares.  Mr. Hernandez asks her to explain her thinking.  “I’m not sure,” she
admits.  He then asks her to reread the problem.  He asks the class to think about
what would happen if they tried to distribute 100% across the 80 squares.  “Each
square would represent more than 1%,” responds Michelle, a glimmer of under-
standing on her face.  “Wouldn’t each square represent 1.25%?” asks Eric.  Michelle
thinks for a minute and then explains that after allocating 1 percent to each square
there would be 20 left over and that 20 divided among 80 would give one quarter
more for each square or 0.25.  “Oh, I see!” exclaims Michelle excitedly, doing
some calculations off to the side of the transparency.  “Fifty-eight squares should
be shaded for 72.5% of 80, because 58 times 1.25 equals 72.5!  Is that it?”

In the discussion that follows, Louis says that he multiplied 0.725 by 80 to get 58
and explains that he obtained a fraction 58

80  and reduced it to 29
40 .  Jenny says that

she divided 80 squares into 10 equal columns of eight squares each and then shaded
seven columns (56 squares) and two more squares (because 2 is 1

4  of 8, which
equals 0.025 of 80) for a total of 58 squares.  Lynn explains how she used a calcu-
lator to find her solution.

Throughout the lesson, Mr. Hernandez presses the students to make their reason-
ing explicit and to explain their solution processes.  He requires them to say what
the symbols and representations mean in the context of the problems they are
solving.  When the students arrive at a numerical answer, he asks questions such
as “Can you explain what that number refers to?”
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To wrap things up for today, Mr. Hernandez summarizes the different strategies
presented.  He then assigns a similar set of problems for homework and asks the
students to experiment with the various strategies they had seen in class with an
eye toward determining the one they thought “best.”  “What does it mean for a
strategy to be ‘best’?” asks Laura.  “Good question!” says Mr. Hernandez.  “That’s
part of what I want you to think about.  What criteria would you use to decide
whether one strategy was better than others?”  Several hands shoot up, but he
waves them down.  “We’ll discuss that tomorrow.  I want everyone to work on this
first.”

SOURCE: Adapted from Henningsen and Stein, 1997.

with decimals, percents, and fractions—all of which they have modeled using
multiple representations prior to this lesson—while also setting them up to
extend their proficiency in this domain.  He has used this same task many
times and has discussed it with other teachers who have also used it with
their students.  He knows what students are likely to do and where they
might stumble.  He has prepared questions to help move the work firmly
toward the mathematical goal.  He is able to take advantage of students’ ques-
tions as they arise.  He appraises the mathematical value of their questions
and makes careful decisions, on the spot, as to which are worth taking up in
class, which might be better simply answered, and which merit individual
work but do not seem worth bringing up in class for everyone’s consideration.

The students have had considerable experience representing areas other
than the usual 10 × 10 grid.  At the same time, the task Mr. Hernandez pre-
sents is not yet routine for the students and is open to a variety of solution
strategies.  He does not tell them what to do; instead, he uses the task as the
medium for the lesson development.  Mr. Hernandez has given the discus-
sion of multiple solution strategies a great deal of thought before making it
part of the lesson, for he is aware that explicitly examining the correspon-
dences among alternative representations is crucial.  If students merely see
different representations without explicit attention to their correspondences,
the lesson he is teaching will not produce the learning that he is striving for.
The discussion of multiple solution strategies at the overhead projector pro-
vides an opportunity for Mr. Hernandez and several of the students to model
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adaptive reasoning and conceptual understanding.  He also knows how much
he has to do to make sure that the productive work the students are doing
comes together at the end.  He has found this way of working valuable.  He is
sensitive to the critical role that he plays during the lesson, even though it
seems that the students are doing a large amount of the talking and the work.

We have been looking at upper elementary and middle school classrooms.
In the last sample lesson (Box 9-5), a fourth teacher, Ms. Kaye, is attempting
to develop her first-grade students’ understanding of subtraction as it is used
to compare quantities.  She wants the students to find and consider their own
ways of making comparisons of two-digit whole numbers in which the larger
number has the smaller digit in the ones place.

Box 9-5

Ms. Kaye—
Teaching First Graders About Comparing Prices

Ms. Kaye gives her first-grade class a problem that involves comparing prices on a
menu.  She reads the following problem several times and writes the numbers on
the overhead projector:

At Wu’s Dairy a single ice cream cone costs 59¢.  A double costs 85¢.
How much more does a double dip cost than a single dip?

The children eagerly set to work on the problem at their desks.  A number of tools—
including counters of various kinds, plastic coins, and base-10 blocks—are avail-
able in the corner of the room.  While the children work, Ms. Kaye talks with indi-
vidual children about their solutions.

Ms. Kaye stops at Kurt’s desk and asks him what he is doing.  He explains that he
is trying to find out how much more 85 is than 59 and proceeds to make 59 with
base-10 blocks.  Ms. Kaye asks him what he is going to do next.  Without answer-
ing, Kurt makes 85, again with the blocks.  Once more Ms. Kaye asks him what he
is going to do next.  Staring at the blocks, Kurt does not respond.  Ms. Kaye asks
what he is trying to figure out.  “How much bigger 85 is than 59,” he murmurs.  He
does not seem know how to proceed.  Ms. Kaye focuses his attention on the base-
10 blocks and asks whether they could help him figure it out.  Saying that he wants
find out how much more there is in the 85 set of blocks than the 59 set, Kurt pro-
ceeds to match the two sets, pairing block for block.  He trades in a rod (a 10) from
the 85 set for 10 ones to make possible the matching of the 5 ones and the 9 ones.
After the matching is complete, Kurt counts the blocks left unmatched and gets
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two rods (tens) and six units (ones).  “That’s 26 more,” he announces, looking up
and smiling at his accomplishment.

This interaction with Kurt takes about five minutes.  Continuing to circulate around
the class, Ms. Kaye works with five more students in a similar fashion, asking
questions, watching, listening carefully, and guiding where needed.

After about 15 minutes of individual work by the students, Ms. Kaye gathers the
class together for a discussion of the problem.  Some of the students are asked to
share their solutions with the rest of the class.  As they do, Ms. Kaye asks them to
explain what they are doing and why.  She asks the children to compare solutions:
“How is Mina’s solution like the one Brian showed?  How is it like Liona’s?  Are
there differences?”  Five children present their solutions.  Two have counted up
from 59 to 85, although using different approaches.  Another counts with money
from 59¢ to 85¢.  One has subtracted 59 from 85, another 59¢ from 85¢.  One child
has 34¢ for an answer, and Ms. Kaye gently guides her to see where she made an
error, which she corrects.

After each child finishes, Ms. Kaye tries to make sure that the presented solution is
clear.  She also keeps asking the class to compare the different strategies.  Ms.
Kaye presents a new problem, and the work begins again, following the same
pattern as before.  Again, she works with individual students.  Over the course of
the class period, she is able to work individually with almost half the class; the
next day, while working on the next set of problems, she will try to get to the rest.

At the end of the lesson, Ms. Kaye asks the children to summarize what they did in
class by writing in their math journals.  She reads over their shoulders and notes
how much more articulate they are becoming in speaking and in writing.  She
passes out a sheet of paper with a problem for homework, asks them to put the
sheet in their backpacks, and sends them out for recess.

SOURCE: Adapted from Carpenter, Fennema, Fuson, Hiebert, Human, Murray,
Olivier, and Wearne, 1999.

In this lesson, students work on contextualized problems—problems set
in a realistic context—that are designed to develop their ability to model
situations and use arithmetic operations to solve questions about comparing
quantities.  Developing the students’ representational ability and adaptive
reasoning is an explicit goal.  In particular, Ms. Kaye is trying to develop in
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her students the inclination and skill to compare alternative representations
for a problem situation and their solutions to the problem.  She has been
impressed by their developing capacity to work sensibly with numbers larger
than she would have expected several years ago.  Ms. Kaye is also deliber-
ately working on helping the students develop language as a tool for doing
mathematics: to pose and respond to questions, to give explanations, to reflect
on their work.  The lesson is structured in a way that enables Ms. Kaye, when
the class is working independently, to deal individually with students, guid-
ing their work in particular ways while remaining attuned to each student’s
efforts and progress.

The approach Ms. Kaye is using takes considerable planning: The task
that the students are doing must be mathematically productive of the next
step in the curriculum, and it must also be engaging and appropriately diffi-
cult for all the children, so that they are able to work without constant super-
vision.  It also takes developing norms in the class whereby the teacher can
work individually with students and be able to attend closely to the math-
ematical knowledge and ways of reasoning being used by each child.  This
approach is worth developing, Ms. Kaye believes, for it continually provides
her with accurate information about what the students are learning, informa-
tion she uses to shape how she continues the lesson.  The lesson also pro-
vides students with time to work alone, uninterrupted by others’ thinking, as
well as with time to share and compare ideas, methods, and results.  Ms. Kaye
is aware of risks she runs with this approach.  For example, when students
share different methods, they may become confused.  Students may end up
wondering what the right answer to the problem is.  However, she has seen
the benefits of this approach and is committed to continuing to work on
developing her skills in working with students in these ways.  She knows that
some parents are pleased and others worried about what she is doing.  She
works hard to keep the parents informed and frequently invites them in to
observe and later talk with her about what she and the children are doing.
She finds that this investment in parents’ awareness and support has paid off
in terms of her students’ learning, as well as in communication between home
and school.

Comparing the Lessons

The four classroom vignettes provide snapshots of different ways in which
students, teachers, and content interact to produce different opportunities
for student learning, teaching practice, and curriculum content to be mani-
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fested.  With respect to developing the mathematical proficiency of the
students in the class, each approach affords possibilities, and each holds risks.

Consider first the mathematical content and how each teacher selects,
shapes, and represents it for learning.  Mr. Angelo, for example, constrains
the content topic of multiplying by powers of 10 in ways that make it likely
that all students will be able to produce correct answers, at least as long as
they remember the rule.  He provides them with a single rule that consoli-
dates two separate rules, adding zeros and moving decimal points.  His role is
to demonstrate, provide practice, and check on their progress.  The focus of
this lesson is not to explore different methods for solving problems or probe
the underlying meanings.  Rather, he is deeply concerned with helping every
student in his class learn to multiply by powers of 10 efficiently and accurately.

Mr. Angelo recognizes that one risk he faces is that students will develop
competence with the procedure and yet lack understanding of what they are
doing or why.  Should they forget the procedure, they would have no concep-
tual basis for reconstructing it.  However, he has seen that when they learn
rules solidly, they are able to demonstrate procedural fluency with routine
mathematical procedures.  One way in which he has tried to avoid that risk is
to make sure that the rules his students do learn are not mere fragments (add
zeros, move decimal points).  More general rules have greater power; he knows
that and works to avoid giving the students lots of bits and pieces.  He also
designs his work with them to stage the development of the procedure in a
way that he thinks will help build a better platform for their capacity to multiply
numbers by powers of 10.

Ms. Lawrence organizes her students’ mathematical work to bring them
to a general process for adding fractions, including an indication of its natural
origins and why it works.  She asks questions designed to take the lesson
where she wants it to go; the students are expected to participate in that
venture, answering questions and following the development of the ideas.
What she makes mathematically central—a procedure for adding fractions
together with its justification—melds conceptual understanding, procedural
fluency, and adaptive reasoning.  How she engages students requires active
participation on their part, following closely her design for the lesson.  Her
students rarely produce unexpected ideas or solutions, for she tightly plans
her lessons to anticipate what students will do and say, and their contribu-
tions typically fit her plan.

Again, Mr. Hernandez’s lesson about different representations of rational
numbers is different from either Mr. Angelo’s or Ms. Lawrence’s.
Mr. Hernandez’s approach involves less control of students’ work as he seeks

With
respect to
developing
the
mathematical
proficiency
of the
students in
the class,
each
approach
affords
possibilities,
and each
holds risks.

Copyright © National Academy of Sciences. All rights reserved.



330 ADDING IT UP

to develop their understanding and skill.  He takes rational number—a topic
often treated piecemeal in school mathematics—and works explicitly on con-
nections: How do different representations of the same rational number map
onto one another?  The problems he offers students are not as straightforward
as those provided by any of the other teachers: That is, the mathematical
work is designed to challenge the students’ thinking and to elicit specific
variations in their strategies and solutions.  The tasks and the ways in which
Mr. Hernandez uses them are not designed to lead students directly to obvious
conclusions.  Instead, they set the stage for the work he intends.  Students’
solutions and explanations provide raw material for the lesson, and
Mr. Hernandez expects the students to work on one another’s solutions during
the class discussion.  He has seen that students will not automatically be able
to engage in discussions of complex mathematical problems, especially in
classrooms as diverse as his.  Consequently, he has been working hard over
the last few years to develop his own skills at getting all students involved,
including challenging different students appropriately.

In Ms. Kaye’s first-grade lesson on whole numbers, the students are not
taught a procedure for solving comparison problems (e.g., When you see “how
many more?” it means you should subtract).  In fact, a major mathematical
goal of her lesson goes well beyond comparison of two quantities.  It is to
generate and uncover different solution strategies, including modeling situa-
tions and using representations, to explore and justify those strategies, and
then to find similarities and differences between different solutions.  She
wants to build on her students’ mathematical understanding.

Ms. Kaye’s lesson also illustrates that how the development of the math-
ematical content in instruction can rest on the teacher engaging students in
solving mathematical problems.  In her class the students’ ideas and methods
generate significant portions of the lesson’s substance, and the students are
expected to play a major role in the development of the lesson—sharing their
solutions, providing explanations, analyzing options.  Ms. Kaye’s forays around
the room give her detailed information about individual students’ progress
that she uses in directing their mathematical work toward her goals.

Because Ms. Kaye has designed a lesson that opens up space for a variety
of student ideas and methods, her approach risks generating multiplicity with-
out clarity, connection, or closure.  Although it is not Ms. Kaye’s intention,
the students may conclude that mathematics is a subject in which everyone
can devise his or her own equally valid concepts and methods.  The students
may fail to appreciate the need for analysis, comparison, and evaluation—for
common knowledge—or may continue to use their own safe procedures rather
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than developing more sophisticated ones.  These are serious risks, ones she
has seen emerge both in her own teaching before she was as aware of this
problem as she is now and in the classrooms and accounts of many of her
colleagues.  Consequently, she is now much more careful to see to it that the
lesson is pulled together at the conclusion, so that the mathematical points
are made plain for students.  Ms. Kaye keeps a close eye on all the district’s
learning goals for first grade as she uses problems like the one in the lesson,
being careful that she covers the curriculum for the year.

While Ms. Kaye poses a problem that invites a wide range of solution
methods appropriate for students at different places in their understanding,
Mr. Hernandez gives a problem strategically designed to elicit specific
approaches, material to be used to advance students’ understanding of the
correspondences among representations of rational numbers.  In both
Mr. Hernandez’s and Ms. Kaye’s classes, the students hear, use, and interact
with other students’ ideas.  In Mr. Angelo’s and Ms. Lawrence’s classes, the
teacher is the source of the lesson substance, and the students engage less
with one another as a source and medium of mathematical work.

These vignettes help to show that the mathematical content and how it
is framed and formulated into instructional tasks make a difference for the
learning opportunities provided in a lesson.  How the teacher interprets and
uses such tasks to develop a lesson also fundamentally shapes instruction.
Moreover, the ways in which the students make sense of and engage with the
tasks and the teacher significantly affect how the lesson proceeds.  All teachers
face the challenge of engaging students in the mathematical work, maintain-
ing their focused involvement in it, and helping them take advantage of
instruction to learn.  Each of our four teachers manages this challenge differ-
ently, which has different consequences for students’ opportunities to learn.
Mr. Angelo constrains the mathematical content in ways that focus students’
attention on the specific learning goals of the lesson, making divergence of
method or result unlikely.  Ms. Lawrence musters students’ engagement by
asking them to explain and justify what they are saying.  Mr. Hernandez’s
approach relies on setting challenging tasks and using anticipated students’
solutions—errors as well as correct solutions—as part of the lesson material.
Ms. Kaye engages the students through thought-provoking, carefully chosen
tasks that invite multiple representations and strategies, and then she works
intensively with individual students.  Whereas Mr. Angelo runs the risk of his
students forgetting the procedure since they lack the conceptual foundation,
Ms. Kaye risks confusing her students with a blizzard of solution methods.
Ms. Lawrence maintains a tight focus and hence reduces the ambiguity for
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her students—ambiguity that in Mr. Hernandez’s lesson may be leading to
frustration or disengagement for his students.

Teachers vary in how they manage the content and the incentives for
students to engage in and succeed with it, and their choices present different
advantages and risks for learning.  Although it may not seem obvious, teach-
ers who teach in ways like Mr. Hernandez and Ms. Kaye must prepare in
detail for class; many observers of teaching fail to appreciate the significance
of design and preparation in making these sorts of lessons more effective in
helping students learn.  Teachers like Mr. Angelo and Ms. Lawrence, how-
ever, need to work hard to figure out what their students are actually taking
from instruction and what that implies for their approach to teaching com-
mon mathematical procedures.

The four lessons make plain that instruction does not occur in a vacuum.
Parents, administrators, policies, the expectations of other teachers all may
affect teachers’ conceptions and practices.  Teachers are differentially sensi-
tive to particular features of their environments and respond in different ways.
Mr. Angelo is concerned about the pressures exerted by testing and tailors
his approach to target the focus of these tests.  Mr. Hernandez, in contrast, is
sure that approaching the topic more conceptually and with more complexity
will equip his students to do well even on relatively routine, skill-based tests.
Just as teachers’ perceptions of their environments affect instruction, so too
do students’ perceptions.  For example, if students hear criticism at home or
if parents are puzzled and concerned about the mathematics program, stu-
dents’ resulting unease will affect their interactions with their teachers.

These snapshots of four classrooms are no more than glimpses into a com-
plex set of interactions happening over time.  They are segments from single
lessons and, as such, provide a nearsighted view of school mathematics in-
struction.  Instruction is not self-contained in serial lessons but draws on what
happened yesterday, last week, last fall.  Ideas about decimal notation that
were taken up in a previous unit are used as Mr. Hernandez’s students grapple
with correspondences among different ways to represent rational numbers.
Ms. Kaye’s work with her first graders early in the year, helping them learn to
express mathematical ideas in speech and in writing, equips them to write
better now.  Later learning builds on earlier successful accomplishment; new
ideas are constructed using those already known.  For example, a teacher
could not effectively define a prime number if her students did not already
possess some understanding of factoring.  That understanding might have
been developed in a variety of ways, but without it teaching the concept of a
prime number would require simultaneously teaching about factors.
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Neither in one lesson nor over a year does any one of the core elements
of instruction—mathematical content, teacher, students—alone determine
what happens.  Instead, it is in enactment—in their mutual and interdepen-
dent interaction—that instruction unfolds.  The quality of instruction does
not inhere in any single element, whether challenging, exemplary curricu-
lum material; competent, enthusiastic teachers; or capable, eager students.
What makes curriculum exemplary, teachers competent, and students capable
is their skilled use of one another to produce teaching and learning.  How
well they can take advantage of the possibilities afforded by the lesson and
how well they can avoid the pitfalls determine how well students are able to
use instruction to learn and how well teachers are able to guide that learning.

We turn next to what research on teaching has to say about shaping the
nature and quality of instructional interaction.  Given the possibilities that
are paramount in each of the episodes described above and the potential risks
of each approach, what is known about how to take advantage of the possi-
bilities and avoid the pitfalls?

Findings from Research on Teaching

The interactive perspective on instruction6  that we take in this chapter
shapes our discussion of the studies we review.  Using the instructional tri-
angle depiction of instruction in Box 9-1, we ask what is known about the
impact on student learning of how teachers select and use content (the teacher-
content side of the triangle), how teacher and students interact (the teacher-
student side), and how students interact with content (the student-content
side).  Although we discuss each side of the instructional triangle separately,
instruction is not about one side alone but is about the trilateral interaction
among teacher, students, and content.

Teachers and Content

What is learned depends on what is taught.  Choosing the content, decid-
ing how to present it, and determining how much time to allocate to it are
ways in which learning is affected by how the teacher interacts with the con-
tent.  Furthermore, some decisions about the content are made not at the
classroom level but at the school, district, or even state levels.

Opportunity to Learn

The circumstances that allow students to engage in and spend time on
academic tasks such as working on problems, exploring situations and gather-
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ing data, listening to explanations, reading texts, or conjecturing and justify-
ing have been labeled opportunity to learn.  As might be expected, students’
opportunity to learn affects their achievement.  In fact, opportunity to learn is
widely considered the single most important predictor of student achieve-
ment.7   Opportunity to learn can be influenced by individual students, their
teachers, their schools or school districts, or even the country’s educational
system.

Research at the local and national levels has identified the curriculum as
a potent force in students’ opportunity to learn.  Students in different cur-
riculum tracks receive differential opportunities to learn mathematics, which
is then reflected in their achievement.8   Some studies show that when stu-
dents believed to be less capable academically are given an opportunity to
learn, they can in fact do so.9

Many curriculum decisions are made at the school or district level and lie
outside the province of the classroom teacher.  Nevertheless, teachers still
have considerable control over their students’ opportunity to learn.  U.S.
elementary school teachers vary widely, for example, in how much instruc-
tional time they allocate to various school subjects.  In one study of second-
grade classes, the average time allocated to mathematics ranged dramatically
from a low of 24 to a high of 61 minutes a day for different teachers.10   In
another study some “teachers spent as much as 40 percent of their time
teaching mathematics; several others never taught mathematics in the twenty
randomly chosen hours when our observers visited each classroom.”11   That
sort of variation is not unusual across classrooms and even within an indi-
vidual teacher’s practice.  Teachers also vary in how they manage the time
they have, sometimes focusing on one strand of proficiency and ignoring
others.  For example, two fourth-grade teachers ostensibly following the same
mathematics textbook were found to spend their time quite differently: One
teacher focused on concepts, and the other emphasized drill and practice of
computational skills.12   Even when the amount of time and the textbook are
uniform, therefore, students can encounter different content and have differ-
ent opportunities to learn it.

Consider the lessons of Mr. Angelo and Ms. Lawrence in the vignettes
presented above.  These two teachers use about the same amount of instruc-
tional time.  The crucial differences lie in how they use that time.  Mr. Angelo
works on developing fluency with the procedures without a focus on their
underlying meanings or justification.  Ms. Lawrence, in contrast, spends most
of her time developing understanding of a procedure through structured
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interactions with her students.  Mr. Angelo gives 40 practice problems, whereas
Ms. Lawrence uses only four.

Task Selection and Use

Researchers have recently taken a closer look at instruction by investi-
gating the choice and use of academic tasks.  Tasks are central to students’
learning, shaping not only their opportunity to learn but also their view of the
subject matter.  The cognitive demand of tasks can vary significantly.  More-
over, the tasks typically assigned to students in many classrooms make only
minimal demands on their thinking, relying primarily on memorization or
use of procedures without connections to concepts.  There is growing evi-
dence that students learn best when they are presented with academically
challenging work that focuses on sense making and problem solving as well
as skill building.13   Take a couple of the tasks from our lesson vignettes.  The
task presented by Mr. Hernandez, shading 0.725 of an 8 × 10 grid, is a
cognitively demanding task for seventh graders.  His students have had prior
experience with decimals, percents, and fractions, all of which they have
modeled using multiple representations.  But they have not had to coordi-
nate the three, a mathematical problem of considerably more sophistication.
The task presented by Mr. Angelo is less cognitively demanding, for all that
students have to do is recall the steps of the procedure and answer questions
about them.  Still, whatever task a teacher poses, its cognitive demand is
shaped by the way students use it.  In fact, tasks that are set up to engage
students in cognitively demanding activities often degenerate into less
demanding activities as teachers and students work together to help the stu-
dent “understand.”14

Several factors have been identified as influencing the decline in cogni-
tive demand from task setup to task enactment.  Chief among them is that
the task is made routine in one of two ways: The students may start pressing
the teacher to reduce the challenge by specifying explicit procedures or steps
for them to perform, or the teacher may take over the demanding aspects of
the task when the students encounter difficulty by either telling them or
demonstrating what to do.

Similarly, factors have been identified that help to maintain student
engagement at a high level.15   One is choosing tasks that build on students’
prior knowledge.  In our vignettes both Ms. Lawrence and Ms. Kaye use
students’ prior knowledge to engage them in demanding cognitive tasks.
Ms. Lawrence links what students already know about adding fractions to
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the new topic of adding fractions with unlike denominators.  Rather than
merely presenting the process, she guides them in formulating the process
themselves, building on their existing knowledge.  Ms. Kaye uses students’
informal knowledge about numbers, money, and operations to pose a demand-
ing two-digit subtraction problem to her first graders.  She also provides so-
called scaffolding to help Kurt stay engaged in the task without showing him
how to do it.

The use of scaffolding is another factor that helps to maintain student
engagement at a high level.  By offering a subtle hint, posing a similar prob-
lem, or asking for ideas from other students, Mr. Hernandez provides some
scaffolding to assist his students as they reason through the grid problems.
He does so without reducing the complexity of the task at hand or specifying
exactly how to proceed.  He allows substantial time for discussion of the prob-
lem, thus affording the students an opportunity to learn by considering and
discussing multiple solution strategies.

Allocating neither too much nor too little time for the task is another
factor associated with keeping engagement and cognitive demand high.  Recall
how Ms. Lawrence steps back to give her students a chance to think.  Had
she not provided that opportunity, Jim might not have come up with his solu-
tion.  Mr. Hernandez also allows ample time for discussing the problems,
thus affording his students an opportunity to learn by considering and dis-
cussing multiple solution strategies.  The discussion of multiple solution
strategies at the overhead projector provides an opportunity for Mr. Hernandez
as well as several students to model a high level of performance—another
factor that helps maintain engagement in cognitively demanding tasks.
Ms. Lawrence also models a high level of performance by justifying each
step in the general procedure for adding fractions with unlike denominators.

A final factor in maintaining high levels of student engagement with de-
manding tasks is sustained pressure from the teacher on explanation and the
development of meaning.  Throughout their lesson, Ms. Lawrence and
Mr. Hernandez press students to explain their solution processes and to attach
meaning to the symbols they are using.  Ms. Kaye does likewise, both as she
talks with individual students and as she responds to individual students pre-
senting their solutions to the class.  Teachers must not only select and suc-
cessfully launch a high-level mathematical task but must also actively and
consistently support students’ cognitive activity without reducing the com-
plexity and cognitive demands of the task.  In the classroom the teacher, the
students, and the task clearly interact in a dynamic way to shape students’
learning.
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Planning

Given that the learning of mathematics develops interactively over time,
effective teachers understand that teaching requires considerable effort at
design.  Such design is often termed planning, which many teachers think of
as a core routine of teaching.

Studies of how U.S. teachers plan show that they tend to focus on the
activities in which students will be engaged and how those activities will be
organized.16   Teachers’ plans seldom elaborate the content that the students
are to learn through their engagement with the proposed activities.17   Other
research suggests that teachers who make detailed plans can sometimes be
relatively inflexible when students encounter difficulties or raise thoughtful
questions.  These teachers are committed to their plans and have difficulty
making midcourse adjustments.

Some teacher educators have made planning a central objective of their
teacher preparation programs.  Most programs provide prospective teachers
with model plans or rubrics to scaffold their planning.  Derived from teacher
educators’ ideas about what would constitute helpful approaches to preparing
lessons, these frameworks do not necessarily reflect what good teachers do.

Researchers have rarely explored what it might mean to prepare for teach-
ing in ways that would elaborate content goals and simultaneously equip the
teacher with good maps of the paths they might take to reach desired desti-
nations.  Because many curriculum materials seek to do this sort of prepara-
tion for teachers, an important area for research is how teachers use the highly
elaborated teachers’ guides often held up by educators as positive examples.
What do teachers read when planning, how do they interpret and use what
they read, and how do those uses affect their teaching?

Recent studies of Japanese professional development programs have
revealed a practice termed lesson study that involves groups of teachers working
together on single lessons, elaborating goals, investigating pupils’ thinking
and difficulties with particular content, and exploring different representa-
tions and tasks.  The teachers make repeated trials of these lessons, improv-
ing them in light of their collective study of the effectiveness of the lesson
designs.  We discuss this approach to professional development in chapter 10.
Here we highlight the idea of designing lessons to combine a significant elabo-
ration of one’s content goals with a dedicated and thorough anticipation of
and preparation for a range of likely student responses.  Planning can profit-
ably be seen as a detailed form of instructional design aimed at reducing the
uncertainties of one’s practice, centered on the continual adjustment and
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improvement of instruction, and informed by a close scrutiny of what hap-
pens as the lesson unfolds.

Teachers and Students

Teacher Expectations

Teachers’ selections of tasks and their interactions with students during
instruction are guided by their beliefs about what students need to learn and
are capable of learning.18   Low expectations can lead a teacher to interact
with certain students in ways that fail to support their development of math-
ematical proficiency.  For example, in comparison with their treatment of
high achievers, some teachers consistently wait less time for low achievers to
answer a question before calling on someone else.  They tend to give these
students the answer rather than helping them improve their responses by
rephrasing questions, they criticize them more frequently for failure and praise
them less frequently for success, they call on them less often, and they give
them less cognitively demanding questions and tasks.19   Mr. Hernandez might
easily have succumbed to such a temptation in responding to Michelle’s wrong
answer.  Instead, he asked her to reread the problem and think about what
would happen if 100% were to be distributed across the 80 squares.  That is,
he expected Michelle to be able to solve the problem if she persisted in work-
ing on it—and on her own and with assistance from her classmates, she did.

Closely related to teachers’ expectations is their sense of efficacy, the
feeling that they are effective in helping students learn.  Successful teachers
not only expect their students to succeed but also see themselves as capable
of motivating and instructing students effectively.  Less successful teachers
lack confidence either in themselves as instructors (e.g., “I don’t know the
mathematics well enough to teach it effectively”; “I know what I want to
teach, but I don’t know how to give my students what they need to be able to
learn it”) or in their students’ learning potential (e.g., “No teacher could be
effective with these students because they lack ability, motivation, support-
ive home environments, and so on”).  Studies have identified consistent rela-
tionships among teachers’ sense of efficacy, the patterns of teacher-student
interactions that occur in their classrooms, and their students’ achievement.
For example, teachers with a high sense of efficacy tend to appear more
confident in the classroom, to be more positive and less critical with their
students, to be better classroom managers, to be more accepting and effec-
tive in responding to challenges from students (e.g., “Why are we learning
this?”), and to be more effective in supporting growth and achievement.20

Successful
teachers not
only expect

their
students to

succeed but
also see

themselves
as capable of

motivating
and

instructing
students

effectively.
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These findings on teachers’ sense of efficacy underscore the importance
of preparing teachers so they possess sufficient knowledge to teach with con-
fidence and effectiveness.  They need to know the mathematics they will
teach, their students’ current mathematical thinking, and strategies for rep-
resenting mathematics and meeting their students’ learning needs.  Helping
teachers become proficient in understanding their students’ reasoning, in
choosing a good follow-up question, and otherwise providing scaffolding for
their students can be particularly challenging because such techniques require
high levels of all three types of knowledge and are different from the tech-
niques emphasized in most teachers’ prior experience.21

Motivation

To make consistent progress toward proficiency, students need to be
motivated to engage productively in mathematics lessons and the learning
activities in those lessons.  Motivation for school mathematics learning depends
primarily on the interaction of students with teachers and of students with
mathematical tasks.22   Traditional approaches to motivation typically either
attempt to make learning fun or to rely on grades and other extrinsic rewards
and punishments to pressure students to put forth the necessary effort.  Recent
research on students’ motivation has moved well beyond these traditional
conceptions to establish a richer, more balanced depiction of motivation,
allowing the identification of effective motivational strategies that apply to
the teaching of all subjects, including mathematics.23

Students’ motivation depends on both expectation and value.24   That is,
students are motivated to engage in a learning task to the extent that they
expect to be able to perform the task successfully if they apply themselves and
the degree to which they value the task or the rewards that performing it
successfully will bring.  Therefore, teachers can motivate students to strive
for mathematical proficiency both by supporting their expectations for achiev-
ing success through a reasonable investment of effort and by helping them
appreciate the value of what they are learning.

Maintaining an expectation of success. To make steady
progress toward proficiency, students need continued confidence that they
can meet the challenges of school mathematics.  The most basic strategy for
supporting students’ expectations of success (and their related perceptions
and beliefs, such as a sense of efficacy) involves two basic elements.  The
first is to design for success by assigning tasks on which students can succeed
if they invest reasonable effort.  The second is to provide whatever scaffold-
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ing may be needed to help students acquire and apply concepts, skills, and
abilities as they work on assignments.  This strategy involves building on
students’ current knowledge, which in turn requires understanding what they
already know and where they are headed.

Other strategies include helping students to commit themselves to goals
that are near at hand, specific, and challenging and then following up by help-
ing them assess their performance in terms of their progress toward those
goals rather than by comparing their performance to that of their classmates.
In modeling their own mathematical thinking, in communicating expecta-
tions to students, and in socializing students’ attitudes and beliefs, teachers
should continually emphasize that mathematical proficiency is built up through
experiences in learning and applying what has been learned (and are not in-
nately given and limited).  They need to emphasize that students can meet
daily challenges successfully and move toward higher levels of proficiency if
they consistently put forth reasonable effort and that such effort results in a
gradual but productive deepening of understanding and refinement of skill.25

Valuing learning activities.  To be optimally motivated, students
need not only confidence that they can achieve success but belief that what
they are learning is worth learning.  Traditional approaches to the value aspect
of motivation have attempted not to help students see value in learning
activities but instead to link their performance on these activities to some-
thing else that they do value, such as the prospect of earning rewards.  Rewards
can be useful, but they need to be handled carefully because they can under-
mine intrinsic motivation and distract students’ attention from learning goals
if they are overemphasized.  Rewards can also have undesirable side effects if
they are tied to competitions that create winners and losers.

Alternative strategies for addressing the value aspect of motivation involve
taking advantage of students’ existing intrinsic motivation by emphasizing
topics they find interesting and tasks they find enjoyable.  For example, stu-
dents usually enjoy responding actively rather than merely listening; oppor-
tunities to interact with their peers; situations that invite thought by posing
divergent questions; and activities with game-like features, such as puzzles
and brainteasers.26   These strategies for intrinsic motivation can be helpful,
although teachers may find that their opportunities to use such strategies are
limited by constraints of time and curriculum.

Moreover, although use of these strategies may increase students’ enjoy-
ment of a lesson, it does not directly stimulate their motivation to learn what
the lesson is designed to teach.  Motivation to learn includes the students’
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tendency to find mathematical activities meaningful and worthwhile, to try
to get intended learning benefits by attempting to make sense of the activi-
ties, to relate the new knowledge or skills they are developing to their prior
knowledge or skills, and to think about how they can apply the mathematics
they are learning.  Teachers create motivation to learn by modeling it in their
own classroom discourse, communicating their expectations for success,
assuming that their students are already motivated to learn, and molding their
class into a coherent learning community.  When teaching particular lessons
or providing learning activities, teachers can spur students’ motivation to learn
by communicating enthusiasm for the content, stimulating curiosity or sus-
pense, personalizing the content to make it more concrete or familiar, intro-
ducing it in ways that stimulate interest or an appreciation for its value,
engaging the students in authentic applications of the content, and helping
them to remain goal oriented and attuned to strategies as they work on appli-
cations.27

The lessons taught by our four teachers illustrate some of these prin-
ciples.  These teachers provide environments that support learning.  Their
students participate actively by answering questions, offering solutions, or
providing explanations.  Ms. Lawrence, Mr. Hernandez, and Ms. Kaye focus
on students’ understanding and sense making, and they try to connect the
lesson to students’ prior knowledge.  Mr. Angelo gives his rule for multiplying
by powers of 10 and relates it to the earlier “add zeros” rule for multiplying
by powers of 10 greater than one.  His approach of giving explicit rules to
follow helps to assure success on the tasks, provided that students can
remember the rule.  Mr. Angelo relies for motivation on the personal engage-
ment he shows with his students and on the extrinsic pressures built into the
grading system.  Rather than motivate students through interest or intrinsic
aspects of the intellectual work, he inspires confidence because the goal seems
attainable.

Teaching Students with Special Needs

Although existing research does not provide clear guidelines for teaching
mathematics to children with severe learning difficulties, existing evidence
and experience suggest that the same teaching and learning principles apply
to all children, including special-needs children.  It has long been assumed
that children with moderate, mild, and borderline mental retardation or learn-
ing disabilities are not capable of meaningful or conceptual mathematical learn-
ing and, thus, unlike other children, have to be taught by rote.  Researchers
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have found, however, that it useful not to prejudge them or to assume that
they learn by means of different “laws of learning.”  Instead, it is in the best
interest of special-needs children to assume that the following principles apply
to all children: (a) learning with understanding involves connecting and
organizing knowledge; (b) learning builds on what children already know;
and (c) formal school instruction should take advantage of children’s informal
everyday knowledge of mathematics.28

Learning difficulties among special-needs children stem largely from
instruction that violates one or more of these principles.  Common mistakes
in their instruction include (a) not assessing, fostering, or building on their
informal knowledge; (b) overly abstract instruction that proceeds too quickly;
and (c) instruction that relies on memorizing mathematics by rote.  In other
words, the learning difficulties of special-needs children and children in gen-
eral are the same.

When special-needs children are taught mathematics in accordance with
the above principles, many show significant improvement in learning con-
cepts and skills and can exhibit considerable proficiency.29   Furthermore, even
within what are presumed to be homogeneous groups of children, there are
significant individual differences in their readiness and capacity to learn par-
ticular mathematical skills and concepts.  Together, these findings imply that
many, if not all, special-needs children can benefit from meaningful instruc-
tion that addresses the development of all five strands of proficiency and that
gives attention to both the students’ thinking and the mathematics.

Note that it does not follow from the above principles that special chil-
dren should be treated identically to their same-age peers.  For children with
mental retardation, for example, it may take several years to help them con-
struct the number or arithmetic concepts that other children do in a much
shorter span of time.  Moreover, applying these principles to teaching spe-
cial-needs children may require creative adaptations.  With children who are
blind, for example, computer-based instruction may not be helpful or may
need to be adapted in imaginative ways.  Likewise, for children with commu-
nication disorders, creative solutions may be required to enable them to ben-
efit from small-group work.30   Again, good instruction of special-needs chil-
dren will depend on reflective, knowledgeable, and flexible teachers.

Special-needs children can benefit from careful and thoughtful use of
both mainstreaming and segregated instruction.  Mainstreaming is an instruc-
tional tool that can be used wisely or not.  Currently, it is all too often used
inflexibly and ineffectively.  Consider the case of Ann, a Down syndrome
child, who is placed in a regular eighth-grade mathematics class along with

Copyright © National Academy of Sciences. All rights reserved.



3439 TEACHING FOR MATHEMATICAL PROFICIENCY

children the same chronological age.  Ann sits through class after class with
little or no comprehension of the instruction.  The assigned aide tries to dis-
cuss the instruction afterward, but with little success.  The aide also provides
simplified or watered-down worksheets (e.g., asking Ann what half of various
amounts are instead of worksheets on operations on fractions).  In brief, Ann’s
integration into the class is in name only and does almost nothing to foster
her mathematical proficiency or even rote learning of mathematics.

It is worth noting that Alfred Binet devised the IQ test and advocated
segregated instruction for low-ability students for the most humane of rea-
sons.  As the case of Ann illustrates, he saw that such children were often
utterly lost in regular classrooms and suffered terribly there.  Because segre-
gated instruction was implemented poorly or abused, it has now largely been
abandoned.  Now educators advocate mainstreaming for the most humane of
reasons.  Unfortunately, this approach is all too frequently being implemented
poorly.  In the end there is no substitute for providing adequate support for
all children.  This support includes providing sufficient staff who are both
well trained and caring.  Real improvement in the education of special-needs
children will also require moving past dogmatic positions and taking a reflec-
tive approach that takes into account the best interests of each child.

Interactions with Different Students

In the mathematics class the teacher naturally interacts differently with
different students.  Sometimes, however, differential interactions are associ-
ated not with differences in mathematical ability or accomplishment but with
differences in students’ social class, ethnicity, language, or gender.  For
example, studies have shown that boys have a larger number of academic
interactions with teachers in mathematics class than girls do.  Not only is the
quantity of interactions different, but the quality differs also.  Studies have
documented that girls often receive simpler, more routine questions than boys,
who then receive more difficult and challenging questions.31   As noted ear-
lier, some teachers interact differently with lower achieving students than
higher achieving students, giving them less time to respond, asking them
less demanding questions, criticizing them more often, and calling on them
less.  And lower achieving students are disproportionately children of color,
from poverty, or from households without native speakers of English.  Not
only is there substantial evidence that teachers interact differently with stu-
dents, but students from marginalized groups are also more vulnerable than
other students are to self-fulfilling prophecies of low expectations.32
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Interactions between teacher and student need to be appropriate to the
student and the content, regardless of the student’s social class, ethnicity,
language, or gender.  Effective teachers often make use of their students’
interests to engage them in academic tasks.  Effective teachers of urban African
American students do so by making use of the culture of their students.  They
demonstrate an understanding of their students’ backgrounds and experi-
ences, link classroom content to those experiences, use familiar cultural pat-
terns, and focus on the child.33   High expectations for all students without
regard to their social class, ethnicity, or gender can also pay high dividends.
For example, low-achieving minority students can do as well as other students
when placed in more demanding programs.34   Also, in a study of teachers in
schools serving children of poverty, higher achievement results were obtained
when teachers placed more emphasis on meaning in their mathematics class-
rooms.35   Because the quality of the interaction of teacher and student around
the content is so critical to the success of instruction, the most successful
teachers are not merely sensitive to the cultural diversity of their students
but use that diversity to enrich the learning experiences they provide to the
class as a whole.36

Communities of Learners

Creating classrooms that function as communities of learners has been
the focus of much recent research and scholarship in mathematics educa-
tion.37   In the research on teaching and learning mathematics with under-
standing, four features of the social culture of the classroom have been iden-
tified.38   The first is that ideas and methods are valued.  Ideas expressed by
any student warrant respect and response and have the potential to contrib-
ute to everyone’s learning.

A second feature of a classroom community of learners is that students
have autonomy in choosing and sharing their methods of solving problems.
Students recognize that many strategies are likely to exist for solving a problem,
they respect the methods used by others and that others need to understand
their own methods, and they are given the freedom to explore alternatives
and to share their thinking with the rest of the class.  Notice how
Mr. Hernandez has three other students besides Michelle share their solu-
tions to the grid problem.  Ms. Kaye has five students present their solution
methods.  She also engages the class in a discussion of the similarities and
differences between the various methods.  In contrast, Ms. Lawrence and
Mr. Angelo, although they call on students to answer questions, are more
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interested in presenting a correct solution method than in soliciting multiple
methods.

A third feature of classrooms that function as communities of learners is
an appreciation of the value of mistakes as sites of learning for everyone.
Mistakes are not covered up; rather, they are used as opportunities to exam-
ine reasoning and to deepen everyone’s analysis.  The appreciation of mis-
takes is a fundamental aspect of mathematical work outside the classroom;
inside, it helps build the community.  When Michelle makes a mistake on
the grid problem, Mr. Hernandez does not tell her it is wrong and then call on
someone else.  He uses it instead to push her thinking.

Finally, a core feature of these classrooms is the recognition that the au-
thority for whether something is both correct and sensible lies in the logic
and structure of the subject rather than the status of the teacher or the popu-
larity of the person making the argument.  The resolution of disagreements
resides in mathematical argument.  Both Mr. Hernandez and Ms. Kaye have
their students justify their solution strategies.  Although Ms. Lawrence
frequently asks her students to justify their work, when she presents the pro-
cedure for adding fractions with unlike denominators, she provides the justi-
fication.  She does use mathematical properties to explain the procedure,
however, rather than simply present the rule as Mr. Angelo did.  Hence, in
addition to selecting tasks with goals in mind and sharing essential informa-
tion, the teacher’s primary role is to establish a classroom culture that sup-
ports learning with understanding, thereby serving to motivate students to
learn.

Managing Discourse

An important part of classroom instruction is to manage the discourse
around the mathematical tasks in which teachers and students engage.
Teachers must make judgments about when to tell, when to question, and
when to correct.  They must decide when to guide with prompting and when
to let students grapple with a mathematical issue.  Their decisions do not
simply rest with the mathematical task at issue.  They also need to decide
who should get the floor in whole-group discussions and how turns should be
allocated.  Teachers have responsibility for moving the mathematics along
while affording students opportunities to offer solutions, make claims, answer
questions, and provide explanations to their colleagues.  The point of class-
room discourse is to develop students’ understanding of key ideas.  But it
also provides opportunities to emphasize and model mathematical reasoning
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and problem solving and to enhance students’ disposition toward mathematics.
Therefore, discourse needs to be planned with these goals in mind, not merely
as a “checking for understanding” form of recitation.

Teachers are often inclined to call on students who have the correct or
desired solutions.  This practice makes managing the discourse less complex,
since less complicated or confusing ideas get the floor.  It also shapes both the
task and students’ opportunities to learn from it.

Our four teachers manage the discourse in their classrooms in very differ-
ent ways.  In Mr. Angelo’s lesson, for instance, he does virtually all the talk-
ing, opening only a few constrained entry points for students to offer their
answers.  Ms. Kaye, in contrast, deliberately elicits five disparate solutions
from a range of students.  The group discussion forms the content of the
lesson, so individual students’ ideas contribute directly to the enacted cur-
riculum of the class.  Ms. Lawrence controls students’ contributions to the
lesson but proffers complex questions so that the discourse requires substan-
tial work from students.  She manages by planning strategic questions to move
the lesson to its goal.  Mr. Hernandez incorporates students’ ideas into his
design, deliberately sowing questions that will get particular issues and ideas
on the table for the class to hear and learn from.  Managing the discourse is
both one of the most complex tasks of teaching and the least thoroughly
studied.  Research needs to make visible teachers’ considerations as they
handle classroom discourse and the consequences of their moves for students’
learning.

Grouping

Students are sometimes grouped for instruction either by curriculum path
or achievement level.  Grouping by curriculum, often called tracking, is more
common in high school, where different curriculum tracks exist for students
with different goals for the future: college, business, or trades.  Grouping by
achievement level is more common in elementary and middle schools.  At
those grades, homogeneously grouped classes are usually taught essentially
the same content, but the higher the level, the greater the depth and breadth
of mathematical ideas and the more rapid the pace.

Grouping by achievement level is especially relevant in grades pre-K to
8.  We make two points about such grouping.  First, it is in fact grouping by
achievement and not ability grouping, as it is so often called.  The test scores
(and in some cases school grades) that provide the basis for such grouping are
measures of mathematical knowledge and skills that students have accumu-
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lated to date; they are not measures of some underlying (presumably fixed,
stable, and possibly innate) substrate of mathematical ability.  What is known
about neural capacity and brain functioning with respect to mathematical
abilities is limited and largely speculative.  The evidence does not support
any practice of grouping pre-K to grade 8 students according to their supposed
mathematical abilities.  Meanwhile, data from international comparisons
(especially studies of Asian countries) support proceeding on the assumption
that all students can achieve important mathematical learning goals and work-
ing within heterogeneously grouped classes to see that students do.

In the United States, interest in grouping students by achievement for
mathematics instruction has waxed and waned over the years.  Proponents of
homogeneous grouping claim that reducing the range of achievement levels
within a class or group enables the teacher to meet that group’s needs more
consistently.  Opponents of such grouping claim that the advantages to high
achievers are overstated.  Instead of providing low achievers with ideal
instruction that helps them make rapid gains in proficiency, homogenous
grouping typically results in low achievers being taught a barren curriculum
by less capable teachers in classes that lack strong peer role models.  Any
gains that might accrue to the high achievers are more than offset by losses to
the low achievers and by the resultant perpetuation of social class, racial, and
ethnic inequities in schooling.39

This controversy highlights a second point about grouping: Many studies
on grouping have been conducted over the years (including studies on group-
ing for mathematics instruction), but the results concerning effects on achieve-
ment have been both weak and mixed.40   The findings indicate that overall
mathematical achievement is likely to be similar whether students are grouped
homogeneously or heterogeneously, especially if the same curriculum is pro-
vided to all groups.  When the curriculum is altered, tracking appears to ben-
efit students in high-track classes.41   At the same time, there is evidence that
heterogeneous classes may help students whose earlier performance was low,
with little effect on other students’ performance.42   An analysis of data from
the National Education Longitudinal Study (NELS), however, found that
the estimated achievement of average and high-achieving students would be
depressed in heterogeneous eighth-grade mathematics classes.43   If one were
to look only at these achievement data, one might conclude that it makes
little difference whether students are grouped homogeneously or heteroge-
neously.  However, concerns raised about undesirable side effects of homo-
geneous grouping in grades pre-K–8 in the United States, as well as interna-
tional comparison data indicating that some countries with the most impressive
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mathematical achievement scores practice heterogeneous grouping, suggest
that heterogeneous grouping is the wiser course in the elementary and middle
school grades.

Significant improvements in students’ mathematical achievement are
more likely to result from adjustments in curriculum and instruction than
from adjustments in how students are assigned to classes.  The snapshot of
Ms. Kaye’s class illustrates how a teacher can work effectively with a hetero-
geneous group of students.  All of her first graders are given the same prob-
lem, but she encourages the use of different solution strategies depending on
the level of the student.  Mr. Hernandez provides another example.  He allows
students to present both more and less sophisticated procedures, provided
the students can explain them.  In each case the key is the interaction of the
teacher and the students around a challenging problem, rather than some
particular instructional organization.

Cooperative Groups

Cooperative grouping of students in a class is a teaching practice that has
become popular in recent years.  Because it has also been a target of concern
and criticism, we devote specific attention to it and to the warrants for and
conditions of its use.  First, important to realize is that there is no single prac-
tice or structure that can be identified as “cooperative groups.”  Cooperative
groups are usually groups of three, four, or five students who have been given
a task to work on together, with some effort by the teacher to specify the role
each child is to play in the group’s work.  The several different models for
organizing and conducting cooperative groups generally share common goals.
One goal is to specify the social processes of the groups so as to accommodate
students’ lack of experience with collective work and to provide them with
support.  A second is a commitment to distributing classroom talk more widely,
encouraging all students to talk, to share their ideas, and to become more
actively engaged intellectually.  A third is to help students develop their social
and collaborative skills and not just support their learning of content.  Like
most such techniques and tools, whether cooperative groups contribute to
the development of mathematical proficiency depends primarily on how they
are used.

Several models of cooperative grouping have been extensively studied.
The research indicates that these cooperative group methods are likely to
have positive effects on achievement and on other social and psychological
characteristics.44   The effects on achievement appear to be related to the use
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of specific rewards for a group based on its members’ performance rather
than on the particular cooperative method used.  Ensuring the accountability
of individual group members for the collective work can prevent one or two
students from doing it all while the others simply copy or sit passively.  The
most effective methods combine group goals with individual accountability.

Effects of such grouping on outcomes other than achievement are more
impressive.  Cooperative grouping arrangements promote friendship and posi-
tive social interaction among students who differ in achievement, gender,
race, or ethnicity, and they promote acceptance of handicapped students who
have been placed in regular classes.  Although there may be disadvantages to
using cooperative groups, their judicious use may have potential nonacademic
benefits.

For cooperative groups to be effective, students need to be taught how to
work in this mode.  Simply telling students to push their desks together and
work on a task together does not ensure cooperative learning.  Skills for work-
ing cooperatively have to be taught directly, and students need to be pre-
pared for both the social and the cognitive demands of such work.  Further,
there is evidence that children’s collaborative interactions vary across social
and cultural groups.45   For teachers to use cooperative groups effectively, they
also need to select, organize, and present tasks that are well suited both to
collaborative work and to the curriculum.

Cooperative grouping is one of many instructional practices that teachers
may choose to use at times.  It is neither a wholesale replacement for whole-
class instruction nor a disastrous technique to be avoided at all costs.  Further,
the cooperative methods that have been found to produce positive learning
outcomes take knowledge and skill to implement.  Like any practice, coop-
erative groups can be used effectively or not.

Assessment

Information about students is crucial to a teacher’s ability to calibrate
tasks and lessons to students’ current understanding and skills.  Mr. Hernandez
and Ms. Kaye have each designed the lesson to afford them critical informa-
tion about their students’ progress.  The tasks they frame create a strategic
space for students’ work and for gaining insight into students’ thinking.
Ms. Lawrence gets some of the same sort of information from her probing of
Jim’s solution.  Although Mr. Angelo and Ms. Lawrence get some idea of how
students are doing by circulating around the room, they use the questions
they ask during class as their primary mode of assessment during the lesson.
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In addition to tasks that reveal what students know and can do, the quality
of instruction depends on how teachers interpret and use that information.
Teachers’ understanding of their students’ work and the progress they are
making relies on the teachers’ own understanding of the mathematics and
their ability to use that understanding to make sense of what the students are
doing.  Moreover, after interpreting students’ work, teachers need to be able
to use their interpretations productively in making specific instructional
decisions: what questions to ask, tasks to pose, homework to assign.  Studies
show that when teachers learn to see and hear students’ work during a lesson
and to use that information to shape their instruction, their instruction becomes
clearer, more focused, and more effective.46

More formal sources of assessment information can also help improve
the quality of instruction, including homework, project reports, notebooks,
journals, quizzes, tests, and examinations.  The more precise and detailed
the information and the better coordinated it is with curricular goals, the better
a resource it is for instruction.  Teachers’ ability to interpret and make judi-
cious strategic use of assessment information from many sources is a critical
factor in their instructional effectiveness.

Students and Content

Students and Tasks

How well a mathematical task works to support students’ learning is a
function both of its quality—that is, of its potential for stimulating math-
ematics learning—and of the ways students interpret and use it.  The tasks
Mr. Hernandez designed offer sufficient complexity to be challenging because
he has varied the grid from the familiar 10 × 10 to other configurations.  His
students can make sense of these tasks and are able to work on them, coming
up with solutions that open opportunities for instruction.  Had the tasks been
either too difficult or too trivial for these students, the tasks might not have
worked.  One important consideration in designing mathematical tasks, there-
fore, is that they must take account of what the students already know and
must maximize the possibility for the students to make progress in learning
the content.  This process entails judgments about design so that the tasks
anticipate students’ responses and are built on appropriate-sized mathemati-
cal steps.  All four of our teachers were able to choose and pose problems that
engaged their students in addressing the mathematical goals for the lesson.
Where the lessons differed was in the mathematical significance of the tasks
and in the challenge they posed to students’ thinking and learning.
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Practice

Role of practice.  To many students, practice is as much a part of study-
ing mathematics as of playing a sport or a musical instrument.  The role of
practice in mathematics, as in sports or music, is to be able to execute proce-
dures automatically without conscious thought.  That is, a procedure is prac-
ticed over and over until so-called automaticity is attained.47

There are cognitive benefits to automatization.  The more automatically
a procedure can be executed, the less mental effort is required.  Since each
person has a limited amount of mental effort that he or she can expend at any
one time, more complex tasks can be done well only when some of the subtasks
are automatic.48   Hence, the automatization of mathematical procedures is
justifiable when those procedures are regularly required to complete other
tasks.  For example, basic multiplication combinations such as 4 × 6 = 24 and
6 × 7 = 42 are needed for estimation, multidigit multiplication, single-digit
division, multidigit division, and addition and multiplication of fractions, to
name a few.  Therefore, multiplication combinations need to be practiced
until they can be produced quickly and effortlessly.  The availability of calcu-
lators and computers raises the question of which mathematical procedures
today need to be practiced to the point of automatization.  Single-digit whole
number addition, subtraction, multiplication, and division certainly need to
be automatic, since they are used in almost all other numerical procedures.
Opinions vary, however, as to which other procedures should be made
automatic.

Kinds of practice.  Textbook and worksheet exercises offer the most
common kinds of practice used in U.S. mathematics classrooms.  Such exer-
cises are used to provide students frequent and repeated opportunities to
practice what they have learned.  Often the practice is directly associated
with the topic of the lesson, with the teacher or other students providing
assistance until the student can perform independently.  Another approach
distributes the practice over a longer period: On any one day, only a few of
the exercises assigned might address the lesson topic, and the rest would
address topics studied earlier in the year.  Such distributed practice is based
on the principle that mastery is achieved gradually and once achieved is main-
tained through regular practice.  A number of studies of the U.S. curriculum
have concluded that it is too repetitive.49   These criticisms are about topics
being retaught year after year, not about students practicing learned concepts
and procedures throughout the year to improve efficiency and retention.
Ms. Lawrence’s assignment of a mixture of problems is presumably no acci-
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dent.  Notice that she has even included problems on whole-number addi-
tion to help her students maintain their skill with that operation.

Sites for practice that often go unrecognized are problem solving and the
learning of new content.50   When a group of primary teachers in several stud-
ies shifted their emphasis from skills to problem solving, for example, there
was no overall change in their students’ computational performance.51   Their
students were still getting ample opportunity to practice computations.
Ms. Kaye’s lesson is an example of how practice can be embedded in problem-
solving activity.  Students can also practice previously learned skills while
they are learning new material.  Consider how much practice students get
with single-digit addition while learning how to add multidigit numbers.

Homework

Homework is widely viewed as a useful supplement to classroom instruc-
tion.  Little is known, however, about how much or what kinds of homework
to assign for learning to be optimal.  The limited research on homework has
been confined to investigations of the relation between the quantity of home-
work assigned and students’ achievement test scores.  Neither the quality
nor the function of homework has been considered.52  In fact, even the defi-
nition of homework—done in school or not and with what assistance, if any—
has not always been clear.  Several useful purposes that homework can serve
have been identified, including providing practice, preparing students for
the next class, fostering traits such as responsibility and independence, and
communicating with the home.  Assigning homework for punishment, how-
ever, is always inappropriate.53

As a site for practice, homework can be used to increase procedural flu-
ency and to maintain skill.  Homework can provide for both focused and
distributed practice.  When used for practice, homework assignments should
be realistic in length and difficulty if students are to complete them indepen-
dently and successfully.  Students, however, need to be able to perform pro-
cedures correctly before they undertake practice without supervision.
Otherwise, the practice can automatize incorrect procedures, which are then
difficult to correct.  Further, homework must be monitored and followed up
if it is to have instructional value.54   In making her homework assignment,
Ms. Lawrence first determines that the students understand the new proce-
dure and can perform it correctly.  The next day she will follow up on the
assignment by asking the students to check one another’s work on selected
problems.
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Students can be assigned tasks for homework that might be used to launch
the next day’s lesson or to engage the class in an enrichment activity.  For
example, Mr. Angelo uses the homework to introduce the rule for multiply-
ing by powers of 10.  In Mr. Hernandez’s class, students are asked to try the
various strategies that have been presented and to think about which one
they thought was “best” in preparation for the next day’s discussion.

Homework also provides a means to communicate with parents about
the importance of schoolwork and learning.  Many opportunities exist to send
home assignments that call for relatively little parental involvement.  They
may require no specialized knowledge, or relatively simple guidelines may
be provided.  For example, parents or other caregivers can supervise practice
on the basic number combinations.  Homework support needs to be provided,
however, when home environments may make doing homework difficult.

Manipulatives

The use of concrete materials, sometimes termed manipulatives, for teach-
ing mathematics is widely accepted, particularly in the elementary grades.
Manipulatives should always be seen as a means and not an end in them-
selves.  They require careful use over sufficient time to allow students to
build meaning and make connections.  Beginning in the 1960s, manipulatives
gained popularity in U.S. elementary school mathematics with the introduc-
tion of a variety of concrete materials, including base-10 blocks, Cuisenaire
rods, chips for trading, logic blocks, fraction pieces, and Unifix cubes, to name
a few.

Manipulatives have had their advocates and critics.  Both sides agree,
however, that simply putting concrete materials on desks or suggesting to
students that they might use manipulatives is not enough to guarantee that
students will learn appropriate mathematics from them.  The relationship
between learning and the use of manipulatives is far more complex than many
mathematics educators have thought.  Recent research has explored how stu-
dents interact with manipulatives.  Students may not look at these objects
the same way adults do, and it can be a challenge for students to see math-
ematical ideas in them.  When students use a manipulative, they need to be
helped to see its relevant aspects and to link those aspects to appropriate
symbolism and mathematical concepts and operations.55   Observational studies
have documented cases in which students were taught to use manipulatives
in a prescribed way to perform “wooden algorithms.”56   If students do not see
the connections among object, symbol, language, and idea, using a manipula-
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tive becomes just one more thing to learn rather than a process leading to a
larger mathematical learning goal.57

When used well, manipulatives can enhance student understanding.  They
can, for example, enable teachers and students to have a conversation that is
grounded in a common referential medium, and they can provide material on
which students can act productively provided they reflect on their actions in
relation to the mathematics being taught.58   The base-10 blocks that Kurt is
using in Ms. Kaye’s class provide both student and teacher with a way to
discuss the problem that would have been more difficult without the blocks.
Research on four successful projects aimed at teaching multidigit number
concepts and operations through a problem-solving approach found that, al-
though different in approach, the projects treated the use of conceptual sup-
ports, whether manipulatives or diagrams, in similar ways.59   Each project
provided sustained opportunities for students to construct connections be-
tween the conceptual support, the written symbols, and the number words
and to use the object-word-symbol triad in solving multidigit addition and
subtraction problems.  Manipulatives also help students correct their own
errors.60   The evidence indicates, in short, that manipulatives can provide
valuable support for student learning when teachers interact over time with
the students to help them build links between the object, the symbol, and
the mathematical idea both represent.

Calculators

Although calculators are used more frequently than manipulatives in
grades 4 and 8, the use of calculators is more controversial in mathematics
lessons in grades pre-K-8 than are manipulatives, particularly in the elemen-
tary grades.  Although mathematics educators have advocated the appropri-
ate use of calculators since the 1970s, persistent concerns have been expressed
that an extensive use of calculators in mathematics instruction interferes with
students’ mastery of basic skills and the understanding they need for more
advanced mathematics.61

A large number of empirical studies of calculator use, including long-
term studies,62  have generally shown that the use of calculators does not
threaten the development of basic skills and that it can enhance conceptual
understanding, strategic competence, and disposition toward mathematics.
A meta-analysis of 79 research studies on the effects of calculator was con-
ducted in 1986 and extended in 1992 with nine additional studies.63   This
analysis found that with the exception of the fourth grade, students at all
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grade levels who used calculators together with traditional instruction main-
tained their computational skills.  For average-ability students, a small nega-
tive effect at fourth grade suggested that sustained use of calculators at that
grade might hamper the acquisition of basic skills.  On the other hand, use of
calculators enhanced basic skills acquisition by average-ability students at all
other grade levels, so the negative effect at fourth grade might have been an
artifact of conditions specific to those studies that included fourth graders.
For all ability groups at all grades, problem solving was improved by the use
of calculators.  The positive effects were found when calculator use was per-
mitted in testing; the effects were weak or absent, but never negative, when
testing was conducted without calculators.  Students using calculators were
also found to possess a better attitude toward mathematics and a better self-
concept in mathematics.  This meta-analysis of calculator use has been widely
cited to support efforts to introduce calculators into mathematics instruction
in grades K to 8.  Meta-analysis as a procedure for synthesizing research results,
however, has not been without its critics.64   Studies included in such meta-
analyses often vary in quality and use a variety of different treatments labeled
with a single term, in this case “calculator use.”

Long-term studies of calculator use, however, support the findings of the
meta-analysis.  A study in Sweden found that students in grades 4–6 who
used calculators improved in conceptual understanding, the ability to choose
the correct operation, and proficiency with estimation and mental arithmetic
but did not lose skill in pencil-and-paper calculations when compared with
students in traditional classes.65   The students in the experimental classes
continued to study algorithms, but they spent relatively less time on algo-
rithms and more on problem solving than students in the traditional classes.
In an Australian project involving over 60 teachers and 1,000 students, stu-
dents who had been given unrestricted access to a calculator beginning in
kindergarten were familiar with a wider range of numbers, were better with
mental calculations and estimation, and were better able to tackle real-world
problems than students who had not had access to calculators.  Their pattern
of use of standard algorithms, left-to-right algorithms, and invented methods
did not vary greatly from that of the children who did not have access to
calculators.  Further, they did not become reliant on calculators at the expense
of other methods of calculations.  In sum, no detrimental effects of calculator
use were observed.66   These findings are consistent with those from England
in which six-year-olds in a calculator awareness project, compared with children
in a regular program, demonstrated knowledge of a wider range of numbers,
including decimals and negative numbers.  Project children also performed
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better than traditionally taught children with respect to understanding and
mental computations and were more enthusiastic and persistent.67

Calculator use has been increasing in the United States since 1980.  In
the 1996 NAEP, teachers of 80% of both fourth graders and eighth graders
reported that their students had access to calculators at school.  Only 33% of
the fourth graders were reported to use calculators as frequently as once a
week, whereas 76% of the eighth graders reportedly used calculators daily or
weekly.  These percentages were up from 16% and 56%, respectively, in 1992.
Concomitantly, the percentage of students who never or hardly ever used
calculators in class was down from 51% to 26% at the fourth grade and from
24% to 9% at the eighth grade.68   On TIMSS similar percentages for calcula-
tor use were reported by U.S. teachers.  In some countries, including some
high-achieving countries (such as Japan and Korea) as well as in some low-
achieving countries, mathematics teachers rarely had students use calcula-
tors.69   Internationally, there does not appear to be a correlation between
calculator use and achievement in mathematics.

The question, therefore, is not whether but how calculators should be
used.  There is very little empirical research, however, on the effectiveness of
various uses of calculators.  Issues just beginning to be investigated include
when calculators should be introduced, how young children should use them,
and how much time needs to be spent on written algorithms when calculators
are available.  In the experimental projects described above, calculator use
was accompanied by instruction on number combinations and traditional writ-
ten algorithms and by an emphasis on mental calculations.  These projects
also demonstrate how instructional emphasis in a calculator-inclusive envi-
ronment can shift from computational procedures to problem solving and
mental arithmetic.  Although there is substantial support for the use of calcu-
lators in school mathematics, their role and place remain open to debate and
experimentation.

Issues in Improving Instruction

Research on teaching mathematics offers useful direction for developing
instructional practices that lead to mathematical proficiency.  The studies we
have cited, as well as others too numerous to include, offer a set of recurrent
findings worthy of attention.  Although these findings are presented in broad
strokes, they matter for the finer-grained questions of concern to practitioners
and policy makers, parents, and the public.  Unless these findings are under-
stood, efforts to improve instructional quality and consequent learning are
likely to founder.
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First, no instructional practice, commodity, or material exists indepen-
dently of context and participants as a durable and reliable resource for
developing mathematical proficiency.  How teachers and students interpret,
value, and use such matters as time, curriculum, books, tasks, and calculators
shapes whether and how these affect instruction.

Second, effectiveness depends on enactment.  The effectiveness of a
curriculum, for example, depends not only on its mathematical integrity and
organizational design, but also on how usefully it guides instruction.  Although
analyses of the content of instructional materials are crucial, so too are analy-
ses of how those materials actually play out in lessons day by day across units
of instruction: what is taught, in what ways, and what students learn.  The
same can be said of tools and techniques such as manipulatives, calculators,
small-group work, and homework.

Third, teachers and students’ interactions about mathematics iteratively
shape the effectiveness of their instructional work.  Teachers’ expectations of
students can shape the nature of the tasks the teachers pose, what they ask,
how long they wait, how and how much encouragement they provide—
elements that together compose students’ opportunities to learn as well as
their motivation and confidence to learn.  The students’ responses, in turn,
affect teachers’ estimates of their capacity and progress, shaping their next
moves with students.

Although much is known about effective instruction, many questions merit
close study if teachers and researchers are to develop the kind of knowledge
needed to improve instruction.  We conclude with some core issues crucial to
building the knowledge base on teaching and learning for mathematical pro-
ficiency.

The first issues center on our myopia in examining the research.  The
research on teaching that we reviewed was almost entirely U.S. based.  Closer
probes of practice in other social, political, and cultural settings may chal-
lenge many current assumptions about effective instruction in mathematics.
Despite an intense and appropriate interest in practices in other countries,
Americans know too little about instruction or its effects in other systems.
The interactive framework in this chapter offers a perspective that could be
used to design studies to look across systems.  Comparative research that
affords opportunities to learn about key elements of teaching and learning, as
well as examining both practice and the environments that shape it, would be
enormously helpful in developing a greater knowledge of teaching and learn-
ing for mathematical proficiency.  Researchers need to address not just what
the curriculum is but how it is used and what teachers and students do with
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it, not just how much time is allocated for mathematics but how that time is
spent.  They need to investigate not just whether calculators or other resources
are used, but how they are used.70   Research that looks across countries can
provide a sharper picture of what matters in instruction aimed at developing
proficiency.

A second set of issues concerns instruction over time.  Although learning
is fundamentally temporal, too little research has addressed the ways in which
instruction develops over time.  Many studies are restricted to isolated frag-
ments of teaching and learning, providing little understanding of how the
interactions of teachers, students, and content emerge over time, and how
earlier interactions shape later ones.  How do ideas developed in class affect
later work, and what affects teachers’ and students’ ability and inclination to
make such links, as well as their use of such connections over time?  How is
time used, and how does its use by teachers and students affect the quality of
instruction?

A third arena concerns students and how their diversity affects instruc-
tion.  Too little research offers insight into the experience of students and
how the instruction offered, together with their responses to it, affects their
learning.  Still more important, there are too few well-designed studies that
would offer insight into how instruction might be developed to work effec-
tively for all students.  Too often, research on classroom teaching and learn-
ing either studies faceless, colorless students and teachers out of context, or it
is situated in particular contexts but lacks a design that permits analyses that
could provide the knowledge needed for effective instruction in mathematics.

Fourth, too little research has addressed what it takes for students to learn
mathematics in class.  What do students need to do, and know how to do, in
order to profit from the instruction offered by each of our four teachers?  A
cursory glance at any mathematics class makes plain that the skills, abilities,
knowledge, and dispositions displayed by students are not the same, and yet
teachers and researchers rarely attend to what students need to know and be
able to do in order to use instruction effectively.  People seem to assume
implicitly that instruction acts on students and that opportunities to learn are
actually moments of learning.  Research that examined both what students
have to know and do in mathematics instruction and what teachers can do to
enable all students to make use of that instruction would add significantly to
the knowledge base on teaching and learning mathematics.

A fifth set of issues has to do with reconnecting research on teacher knowl-
edge with instructional effectiveness.  Although most people believe that
teachers’ knowledge of mathematics and of students makes a difference for
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the quality of teaching, little empirical confirmation of this belief can be found.
Moreover, too little is known about the mathematical knowledge that teachers
need and how it is used in instruction.  We discuss this point more in chapter
10, but it is important to the discussion in this chapter, too.  Every time we
reiterate that how teachers use texts, manipulatives, and calculators makes
the difference, we are hovering around questions concerning what teachers
know and how they make use of that knowledge in teaching.

Finally, too little of the extant research probes the work of teaching at a
sufficiently fine grain to contribute to the development of a conceptual and
practical language of practice.  Much of the interactive work in instruction
remains unexamined, which leaves to teachers the unnecessary challenge of
reinventing their practice from scratch, armed with only general advice.
Suggestions that a class “discuss the solutions to a problem” provides little
specificity about what constitutes a productive discussion and runs the risk of
a free-for-all session that resembles sharing more than instruction.  Research
needs to be designed to illuminate what is entailed in a “discussion” and to
probe the specific moves that teachers and students engage in that lead to
productive rather than an unproductive discussions.

Instruction that develops mathematical proficiency is neither simple,
common, nor well understood.  It comes in many forms and can follow a vari-
ety of paths.  As this chapter demonstrates, such instruction offers numerous
fertile sites for research that could make a profound difference in teachers’
practice and their students’ learning.

Notes
1. An interactive perspective on teaching and learning has been discussed by a number

of people, including Piaget, Vygotsky, Bauersfeld, Steier, Voigt, Hawkins, Gravemeijer,
Easley, Cobb, and von Glaserfeld.  The particular version employed here is based on
the work of Cohen and Ball, 1999, 2000, in press.

2. Cohen and Ball, 1999, 2000, in press.
3. This lesson is typical of lessons observed in many U.S. classrooms during the past

half-century.  See, for example, the report by Fey, 1979, or the more recent TIMSS
video study (Stigler and Hiebert, 1999).

4. Note that Mr. Angelo has avoided 100, partly because the rule is stated in terms of
moving the decimal point, and multiplying by 100 = 1 leaves the number unchanged.

5. U.S. eighth-grade lessons from the TIMSS video study were characterized the same
way.  See Stigler and Hiebert, 1999.

6. Cohen and Ball, 2000.
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7. Berliner and Biddle, 1995.  Opportunity to learn was also studied in what is now
called the First International Mathematics Study (Husén, 1967), although there it
was based on teachers’ perceptions of students’ opportunity to learn.

8. McKnight, Crosswhite, Dossey, Kifer, Swafford, Travers, and Cooney, 1987.
9. Knapp, Shields, and Turnbull, 1995; Mason, Schroeter, Combs, and Washington, 1992;

Steele, 1992.
10. Berliner, 1979.
11. Stevenson and Stigler, 1992, p. 150.
12. Freeman and Porter, 1989; Porter, 1993.
13. See, for example,  Campbell, 1996; Carpenter, Fennema, Peterson, Chiang, and Loef,

1989; Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human,
1997; Knapp, 1995; Silver and Stein, 1996.

14. Doyle, 1983, 1988; Stein, Grover, and Henningsen, 1996.
15. Henningsen and Stein, 1997; Stein, Grover, and Henningsen, 1996.
16. Clark and Yinger, 1979.
17. Shavelson and Stern, 1981.
18. Boaler, 1997.
19. Good and Brophy, 2000.
20. Good and Brophy, 2000.
21. Smith, 1996.
22. For example, Hatano, 1988, suggests that students are motivated to learn with

understanding when they encounter novel problems regularly, are encouraged to
seek comprehension over efficiency, and engage in dialogue.

23. National Research Council, 1999b, pp. 29–38.
24. Feather, 1982.
25. Bandura, 1997; Bandura and Schunk, 1981; Dweck and Elliott, 1983.
26. Good and Brophy, 2000.
27. Brophy, 1998, Brophy and Kher, 1986; Good and Brophy, 2000.
28. These principles and the discussion that follows are based largely on a synthesis by

Baroody, 1999.  For related research and syntheses, see also Baroody, 1987, 1996;
Cawley, 1985; and Geary, 1993.  For practical advice for teaching, see Thornton and
Bley, 1994.

29. Baroody, 1999.
30. See Donlan, 1998, for example, for a discussion of students with speech deficiencies.

See Nunes and Moreno, 1998, for a discussion of hearing impairment.
31. Becker, 1981; Leder, 1987.  See also Leder, 1992.
32. Ladson-Billings, 1999.
33. Foster, 1995.
34. Steele, 1992.
35. Knapp, 1995.
36. Good and Brophy, 2000.
37. See, for example, Ball and Bass, 2000; Cobb, Boufi, McClain, and Whitenack, 1997;

Hiebert and Wearne, 1993; Lampert, 1990; Wood, 1999.
38. Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997.
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39. Oakes, 1985: Oakes, Gamoran, and Page, 1992.
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and Sachs, 1996; Slavin, 1987, 1993.
41. Loveless, 1998.
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44. Druckman and Bjork, 1994, pp. 83-111; Johnson, Johnson, and Maruyama, 1983;

Sharan, 1980; Slavin, 1980, 1983, 1995.
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47. Hiebert, 1990.
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1987; Schmidt, McKnight, and Raizen, 1997.
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Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier, and Human, 1997.
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64. Ruthven, 1996.
65. Brolin and Björk, 1992.
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10
DEVELOPING PROFICIENCY IN

TEACHING MATHEMATICS

In the previous chapter, we examined teaching for mathematical profi-
ciency.  We now turn our attention to what it takes to develop proficiency in
teaching mathematics.  Proficiency in teaching is related to effectiveness: con-
sistently helping students learn worthwhile mathematical content.  Proficiency
also entails versatility: being able to work effectively with a wide variety of
students in different environments and across a range of mathematical content.

What Does It Take to Teach for
Mathematical Proficiency?

Teaching in the ways portrayed in chapter 9 is a complex practice that
draws on a broad range of resources.  Despite the common myth that teach-
ing is little more than common sense or that some people are just born teach-
ers, effective teaching practice can be learned.  In this chapter, we consider
what teachers need to learn and how they can learn it.

First, what does it take to be proficient at mathematics teaching?  If their
students are to develop mathematical proficiency, teachers must have a clear
vision of the goals of instruction and what proficiency means for the specific
mathematical content they are teaching.  They need to know the mathematics
they teach as well as the horizons of that mathematics—where it can lead and
where their students are headed with it.  They need to be able to use their
knowledge flexibly in practice to appraise and adapt instructional materials,
to represent the content in honest and accessible ways, to plan and conduct
instruction, and to assess what students are learning.  Teachers need to be
able to hear and see expressions of students’ mathematical ideas and to design

Despite the
common
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teaching is
little more
than
common
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some people
are just born
teachers,
effective
teaching
practice can
be learned.
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A Chinese teacher on how a profound understanding
of fundamental mathematics is attained

One thing is to study whom you are teaching, the other thing is to study the knowl-
edge you are teaching.  If you can interweave the two things together nicely, you
will succeed. . . . Believe me, it seems to be simple when I talk about it, but when
you really do it, it is very complicated, subtle, and takes a lot of time.  It is easy to
be an elementary school teacher, but it is difficult to be a good elementary school
teacher.

SOURCE: Ma, 1999, p. 136. Used by permission from Lawrence Erlbaum Associates.

appropriate ways to respond.  A teacher must interpret students’ written work,
analyze their reasoning, and respond to the different methods they might use
in solving a problem.  Teaching requires the ability to see the mathematical
possibilities in a task, sizing it up and adapting it for a specific group of stu-
dents.  Familiarity with the trajectories along which fundamental mathemati-
cal ideas develop is crucial if a teacher is to promote students’ movement
along those trajectories.  In short, teachers need to muster and deploy a wide
range of resources to support the acquisition of mathematical proficiency.

In the next two sections, we first discuss the knowledge base needed for
teaching mathematics and then offer a framework for looking at proficient
teaching of mathematics.  In the last two sections, we discuss four programs
for developing proficient teaching and then consider how teachers might de-
velop communities of practice.

The Knowledge Base for Teaching
Mathematics

Three kinds of knowledge are crucial for teaching school mathematics:
knowledge of mathematics, knowledge of students, and knowledge of
instructional practices.1   These can be seen in the instructional triangle
(Box 9-1 in chapter 9 and below).2   Mathematics and students are two of the
triangle’s vertices, and instructional practices are the interactions portrayed
by the arrows.
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Mathematical knowledge includes knowledge of mathematical facts, con-
cepts, procedures, and the relationships among them; knowledge of the ways
that mathematical ideas can be represented; and knowledge of mathematics
as a discipline—in particular, how mathematical knowledge is produced, the
nature of discourse in mathematics, and the norms and standards of evidence
that guide argument and proof.  In our use of the term, knowledge of mathematics
includes consideration of the goals of mathematics instruction and provides a
basis for discriminating and prioritizing those goals.  Knowing mathematics
for teaching also entails more than knowing mathematics for oneself.  Teachers
certainly need to be able to understand concepts correctly and perform
procedures accurately, but they also must be able to understand the concep-
tual foundations of that knowledge.  In the course of their work as teachers,
they must understand mathematics in ways that allow them to explain and
unpack ideas in ways not needed in ordinary adult life.  The mathematical
sensibilities they hold matter in guiding their decisions and interpretations of
students’ mathematical efforts.

Knowledge of students and how they learn mathematics includes general
knowledge of how various mathematical ideas develop in children over time
as well as specific knowledge of how to determine where in a developmental
trajectory a child might be.  It includes familiarity with the common difficul-

teacher

students
mathematics

students

contexts

contexts
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ties that students have with certain mathematical concepts and procedures,
and it encompasses knowledge about learning and about the sorts of
experiences, designs, and approaches that influence students’ thinking and
learning.

Knowledge of instructional practice includes knowledge of curriculum, knowl-
edge of tasks and tools for teaching important mathematical ideas, knowl-
edge of how to design and manage classroom discourse, and knowledge of
classroom norms that support the development of mathematical proficiency.
Teaching entails more than knowledge, however.  Teachers need to do as
well as to know.  For example, knowledge of what makes a good instructional
task is one thing; being able to use a task effectively in class with a group of
sixth graders is another.  Understanding norms that support productive class-
room activity is different from being able to develop and use such norms with
a diverse class.

Knowledge of Mathematics

Because knowledge of the content to be taught is the cornerstone of teach-
ing for proficiency, we begin with it.  There is a substantial body of research
on teachers’ mathematical knowledge, and teachers’ knowledge of mathemat-
ics is prominent in discussions of how to improve mathematics instruction.
Improving teachers’ mathematical knowledge and their capacity to use it to
do the work of teaching is crucial in developing students’ mathematical
proficiency.

Many recent studies have revealed that U.S. elementary and middle school
teachers possess a limited knowledge of mathematics, including the math-
ematics they teach.  The mathematical education they received, both as K-12
students and in teacher preparation, has not provided them with appropriate
or sufficient opportunities to learn mathematics.  As a result of that educa-
tion, teachers may know the facts and procedures that they teach but often
have a relatively weak understanding of the conceptual basis for that knowl-
edge.  Many have difficulty clarifying mathematical ideas or solving problems
that involve more than routine calculations.3   For example, virtually all teachers
can multiply multidigit numbers, but several researchers have found that many
prospective and practicing elementary school teachers cannot explain the basis
for multidigit multiplication using place-value concepts and the underlying
properties for adding and multiplying.4   In another study,5  teachers of fourth
through sixth graders scored over 90% on items testing common decimal cal-
culations, but fewer than half could find a number between 3.1 and 3.11.
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Teachers frequently regard mathematics as a fixed body of facts and pro-
cedures that are learned by memorization, and that view carries over into
their instruction.  Many have little appreciation of the ways in which math-
ematical knowledge is generated or justified.  Preservice teachers, for ex-
ample, have repeatedly been shown to be quite willing to accept a series of
instances as proving a mathematical generalization.6   Nowhere in their edu-
cation have they had opportunities to study and experience the nature and
role of justification in mathematics, a notion central to developing mathemati-
cal knowledge.

Although teachers may understand the mathematics they teach in only a
superficial way, simply taking more of the standard college mathematics
courses does not appear to help matters.  The evidence on this score has been
consistent, although the reasons have not been adequately explored.  For
example, a study of prospective secondary mathematics teachers at three major
institutions showed that, although they had completed the upper-division
college mathematics courses required for the mathematics major, they had
only a cursory understanding of the concepts underlying elementary math-
ematics.7   The mathematics of the elementary and middle school curriculum
is not trivial, and the underlying concepts and structures are worthy of serious,
sustained study by teachers.  To develop prospective teachers’ understand-
ing of the mathematics they will teach, careful attention must be given to
identifying the mathematics that teachers need in order to teach effectively,
articulating the ways in which they must use it in practice and what that implies
for their opportunities to learn mathematics.  This sort of attention to teachers’
mathematical knowledge and its central role in practice is crucial to ensure
that their study of mathematics provides teachers with mathematical knowl-
edge useful to teaching well.

Teachers’ mathematical knowledge and student achieve-
ment.  Conventional wisdom asserts that student achievement must be
related to teachers’ knowledge of their subject.  That wisdom is contained in
adages such as “You cannot teach what you don’t know.”  For the better part
of a century, researchers have attempted to find a positive relation between
teacher content knowledge and student achievement.  For the most part, the
results have been disappointing: Most studies have failed to find a strong
relationship between the two.

Many studies, however, have relied on crude measures of these variables.
The measure of teacher knowledge, for example, has often been the number
of mathematics courses taken or other easily documented data from college
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transcripts.  Such measures do not provide an accurate index of the specific
mathematics that teachers know or of how they hold that knowledge.  Teachers
may have completed their courses successfully without achieving mathemati-
cal proficiency.  Or they may have learned the mathematics but not know
how to use it in their teaching to help students learn.  They may have learned
mathematics that is not well connected to what they teach or may not know
how to connect it.  Similarly, many of the measures of student achievement
used in research on teacher knowledge have been standardized tests that
focus primarily on students’ procedural skills.  Some evidence suggests that
there is a positive relationship between teachers’ mathematical knowledge
and their students’ learning of advanced mathematical concepts.8   There
seems to be no association, however, between how many advanced math-
ematics courses a teacher takes and how well that teacher’s students achieve
overall in mathematics.9   In general, empirical evidence regarding the effects
of teachers’ knowledge of mathematics content on student learning is still
rather sparse.

In the National Longitudinal Study of Mathematical Abilities (NLSMA),
conducted during the 1960s and still today the largest study of its kind, there
was essentially no association between students’ achievement and the num-
ber of credits a teacher had in mathematics at the level of calculus or beyond.10

Commenting on the findings from NLSMA and a number of other studies of
teacher knowledge, the director of NLSMA later said,

It is widely believed that the more a teacher knows about his subject
matter, the more effective he will be as a teacher.  The empirical
literature suggests that this belief needs drastic modification and in
fact suggests that once a teacher reaches a certain level of under-
standing of the subject matter, then further understanding contrib-
utes nothing to student achievement.11

The notion that there is a threshold of necessary content knowledge for teach-
ing is supported by the findings of another study in 1994 that used data from
the Longitudinal Study of American Youth (LSAY).12   There was a notable
increase in student performance for each additional mathematics course their
teachers had taken, yet after the fifth course there was little additional
benefit.13

Data from the 1996 NAEP on teachers’ college major rather than the
number of courses they had taken provide a contrast to the general trend of
this line of research.  The NAEP data revealed that eighth graders taught by
teachers who majored in mathematics outperformed those whose teachers
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majored in education or some other field.  Fourth graders taught by teachers
who majored in mathematics education or in education tended to outperform
those whose teachers majored in a field other than education.14

Although studies of teachers’ mathematical knowledge have not demon-
strated a strong relationship between teachers’ mathematical knowledge and
their students’ achievement, teachers’ knowledge is still likely a significant
factor in students’ achievement.  That crude measures of teacher knowledge,
such as the number of mathematics courses taken, do not correlate positively
with student performance data, supports the need to study more closely the
nature of the mathematical knowledge needed to teach and to measure it
more sensitively.

The persistent failure of the many efforts to show strong, definitive rela-
tions between teachers’ mathematical knowledge and their effectiveness does
not imply that mathematical knowledge makes no difference in teaching.
The research, however, does suggest that proposals to improve mathematics
instruction by simply increasing the number of mathematics courses required
of teachers are not likely to be successful.  As we discuss in the sections that
follow, courses that reflect a serious examination of the nature of the math-
ematics that teachers use in the practice of teaching do have some promise of
improving student performance.

Teachers need to know mathematics in ways that enable them to help
students learn.  The specialized knowledge of mathematics that they need is
different from the mathematical content contained in most college mathemat-
ics courses, which are principally designed for those whose professional uses
of mathematics will be in mathematics, science, and other technical fields.
Why does this difference matter in considering the mathematical education
of teachers?  First, the topics taught in upper-level mathematics courses are
often remote from the core content of the K-12 curriculum.  Although the
abstract mathematical ideas are connected, of course, basic algebraic concepts
or elementary geometry are not what prospective teachers study in a course
in advanced calculus or linear algebra.  Second, college mathematics courses
do not provide students with opportunities to learn either multiple represen-
tations of mathematical ideas or the ways in which different representations
relate to one another.  Advanced courses do not emphasize the conceptual
underpinnings of ideas needed by teachers whose uses of mathematics are to
help others learn mathematics.15   Instead, the study of college mathematics
involves the increasing compression of elementary ideas into the more and
more powerful and abstract forms needed by those whose professional uses
of mathematics will be in scientific domains.  Third, advanced mathematical
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study entails using elementary concepts and procedures without much con-
scious attention to their meanings or implications, thus reinforcing the mak-
ing of prior learning routine in the service of more advanced work.  While this
approach is important for the education of mathematicians and scientists, it is
at odds with the kind of mathematical study needed by teachers.

Consider the proficiency teachers need with algorithms.  The power of
computational algorithms is that they allow learners to calculate without hav-
ing to think deeply about the steps in the calculation or why the calculations
work.  That frees up the learners’ thinking so that they can concentrate on
the problem they are trying to use the calculation to solve rather than having
to worry about the details of the calculation.  Over time, people tend to forget
the reasons a procedure works or what is entailed in understanding or justify-
ing a particular algorithm.  Because the algorithm has become so automatic, it
is difficult to step back and consider what is needed to explain it to someone
who does not understand.  Consequently, appreciating children’s difficulties
in learning an algorithm can be very difficult for adults who are fluent with
that algorithm.

The necessary compression of ideas in the course of mathematical study
also shortchanges teachers’ mathematical needs.  Most advanced mathemat-
ics classes engage students in taking ideas they have already learned and
using them to construct increasingly powerful and abstract concepts and
methods.  Once theorems have been proved, they can be used to prove other
theorems.  It is not necessary to go back to foundational concepts to learn
more advanced ideas.  Teaching, however, entails reversing the direction fol-
lowed in learning advanced mathematics.  In helping students learn, teachers
must take abstract ideas and unpack them in ways that make the basic under-
lying concepts visible.16   For example, most adults have lost sight of the fact
that there are different interpretations of division.  For adults, division is an
operation on numbers.  Division, however, is rooted in quite different physi-
cal situations, and distinctions among those situations are important for un-
derstanding children’s thinking, developing their understanding of the mean-
ing of division, and helping them apply that understanding to solve problems.17

For example, although both of the following problems can be represented as
dividing 24 by 6, young children think about them in very different ways and
use quite different strategies to solve them:18

Jane has 24 cookies.  She wants to put 6 cookies on each plate.  How many plates
will she need?
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Jeremy has 24 cookies.  He wants to put all the cookies on 6 plates.  If he puts the
same number of cookies on each plate, how many cookies will he put on each
plate?

These two problems correspond to the measurement and sharing models of
division, respectively, that were discussed in chapter 3.  Young children using
counters solve the first problem by putting 24 counters in piles of 6 counters
each.  They solve the second by partitioning the 24 counters into 6 groups.
In the first case the answer is the number of groups; in the second, it is the
number in each group.  Until the children are much older, they are not aware
that, abstractly, the two solutions are equivalent.  Teachers need to see that
equivalence so that they can understand and anticipate the difficulties chil-
dren may have with division.

To understand the sense that children are making of arithmetic prob-
lems, teachers must understand the distinctions children are making among
those problems and how the distinctions might be reflected in how the chil-
dren think about the problems.  The different semantic contexts for each of
the operations of arithmetic is not a common topic in college mathematics
courses, yet it is essential for teachers to know those contexts and be able to
use their knowledge in instruction.  The division example illustrates a differ-
ent way of thinking about the content of courses for teachers—a way that can
make those courses more relevant to the teaching of school mathematics.

A recent study indicates that teachers’ performance on mathematical tasks
that have been set in the context of teaching practice is positively related to
student achievement.19   In the study, teachers’ ability to interpret four stu-
dent responses to a ratio problem and to determine which were correct was
strongly related to their students’ mathematics achievement.

Teachers’ mathematical knowledge and their teaching
practice.  Conventional wisdom holds that a teacher’s knowledge of math-
ematics is linked to how the teacher teaches.  Teachers are unlikely to be
able to provide an adequate explanation of concepts they do not understand,
and they can hardly engage their students in productive conversations about
multiple ways to solve a problem if they themselves can only solve it in a
single way.

In the last 15 years, researchers have investigated how teachers’ math-
ematical knowledge shapes the way they teach.  Most of the investigations
have been case studies, almost all involving fewer than 10 teachers, and most
only one to three teachers.  In general, the researchers found that teachers
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with a relatively weak conceptual knowledge of mathematics tended to dem-
onstrate a procedure and then give students opportunities to practice it.  Not
surprisingly, these teachers gave the students little assistance in developing
an understanding of what they were doing.20   When the teachers did try to
provide a clear explanation and justification, they were not able to do so.21   In
some cases, their inadequate conceptual knowledge resulted in their pre-
senting incorrect procedures.22

Some of the same studies contrasted the teaching practices of teachers
with low levels of mathematical knowledge with the teaching practices of
teachers who had a better command of mathematics.  These studies indicate
that a strong grasp of mathematics made it possible for teachers to under-
stand and use constructively students’ mathematical solutions, explanations,
and questions.23   Several researchers found, however, that some teachers with
strong conceptual knowledge did not necessarily use that knowledge to under-
stand their students’ mathematical explanations, preferring instead to impose
their own explanations.24

Knowledge of Students

Knowledge of students includes both knowledge of the particular stu-
dents being taught and knowledge of students’ learning in general.  Knowing
one’s own students includes knowing who they are, what they know, and how
they view learning, mathematics, and themselves.  The teacher needs to know
something of each student’s personal and educational background, especially
the mathematical skills, abilities, and dispositions that the student brings to
the lesson.  The teacher also needs to be sensitive to the unique ways of
learning, thinking about, and doing mathematics that the student has devel-
oped.  Each student can be seen as located on a path through school math-
ematics, equipped with strengths and weaknesses, having developed his or
her own approaches to mathematical tasks, and capable of contributing to
and profiting from each lesson in a distinctive way.

Teachers also need a general knowledge of how students think—the
approaches that are typical for students of a given age and background, their
common conceptions and misconceptions, and the likely sources of those
ideas.  Over the last decade, researchers have produced an impressive body
of evidence about how children’s thinking about various mathematical con-
cepts progresses over time.  We have described some of those progressions in
chapters 6 through 8.  Using that body of evidence, researchers have also
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studied how teachers’ knowledge of students’ mathematical thinking is related
to how they teach and to how well their students achieve.

From the many examples of misconceptions to which teachers need to
be sensitive, we have chosen one: An important mathematical notion that
poses a major stumbling block when students are moving from arithmetic to
algebra is the role played by “=,” the sign for equality.25   As we discussed in
chapter 8, many if not most elementary school children have the misconception
that the equality sign is a signal to do something, to carry out the calculation
that precedes it.26   The number immediately after the equal sign is seen as the
answer to the calculation.  For example, in the number sentence 8 + 4 =  + 5,
many students would put 12 in the box.  Children can develop this impres-
sion because that is how the notation is often described in the elementary
school curriculum and most of their practice exercises fit that pattern.  Few
teachers realize the degree of their students’ misunderstanding of such sen-
tences.27   Moreover, although most teachers have some idea that equality is a
relation between two numbers, few realize how important it is that students
understand equality as a relation, and few consider this need for understand-
ing when they use the equals sign.

Knowledge of Classroom Practice

Knowing classroom practice means knowing what is to be taught and
how to plan, conduct, and assess effective lessons on that mathematical con-
tent.  It includes a knowledge of learning goals as expressed in the curricu-
lum and a knowledge of the resources at one’s disposal for helping students
reach those goals.  It also includes skill in organizing one’s class to create a
community of learners and in managing classroom discourse and learning
activities so that everyone is engaged in substantive mathematical work.  We
have discussed these matters in chapter 9.  This type of knowledge is gained
through experience in classrooms and through analyzing and reflecting on
one’s own practice and that of others.

In the sections that follow, we consider how to develop an integrated
corpus of knowledge of the types discussed in this section.  First, however,
we need to clarify our stance on the relation between knowledge and prac-
tice.  We have discussed the kinds of knowledge teachers need if they are to
teach for mathematical proficiency.  Although we have used the term knowl-
edge throughout, we do not mean it exclusively in the sense of knowing about.
Teachers must also know how to use their knowledge in practice.  Teachers’
knowledge is of value only if they can apply it to their teaching; it cannot be
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divorced from practice.  Effective programs of teacher preparation and pro-
fessional development cannot stop at simply engaging teachers in acquiring
knowledge; they must challenge teachers to develop, apply, and analyze that
knowledge in the context of their own classrooms so that knowledge and
practice are integrated.

Proficient Teaching of Mathematics

In chapter 4 we identified five components or strands of mathematical
proficiency.  From that perspective, successful learning is characterized by
comprehension of ideas; ready access to skills and procedures; an ability to
formulate and solve problems; a capacity to reflect on, evaluate, and adapt
one’s knowledge; the ability to reason from what is known to what is wanted;
and a habitual inclination to make sense of and value what is being learned.
Teaching is a complex activity and, like other complex activities, can be con-
ceived in terms of similar components.  Just as mathematical proficiency itself
involves interwoven strands, teaching for mathematical proficiency requires
similarly interrelated components.  In the context of teaching, proficiency
requires:

• conceptual understanding of the core knowledge required in the prac-
tice of teaching;

• fluency in carrying out basic instructional routines;
• strategic competence in planning effective instruction and solving prob-

lems that arise during instruction;
• adaptive reasoning in justifying and explaining one’s instructional prac-

tices and in reflecting on those practices so as to improve them; and a
• productive disposition toward mathematics, teaching, learning, and the

improvement of practice.

Like the strands of mathematical proficiency, these components of math-
ematical teaching proficiency are interrelated.  In this chapter we discuss the
problems entailed in developing a proficient command of teaching.  In the
previous section we discussed issues relative to the knowledge base needed
to develop proficiency across all components.  Now we turn to specific issues
that arise in the context of the components.
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Understanding of Core Knowledge

It is not sufficient that teachers possess the kinds of core knowledge
delineated in the previous section.  One of the defining features of concep-
tual understanding is that knowledge must be connected so that it can be
used intelligently.  Teachers need to make connections within and among
their knowledge of mathematics, students, and pedagogy.

The kinds of knowledge that make a difference in teaching practice and
in students’ learning are an elaborated, integrated knowledge of mathematics,
a knowledge of how students’ mathematical understanding develops, and a
repertoire of pedagogical practices that take into account the mathematics
being taught and how students learn it.  The implications for teacher prepa-
ration and professional development are that teachers need to acquire these
forms of knowledge in ways that forge connections between them.  For
teachers who have already achieved some mathematical proficiency, separate
courses or professional development programs that focus exclusively on math-
ematics, on the psychology of learning, or on methods of teaching provide
limited opportunities to make these connections.  Unfortunately, most uni-
versity teacher preparation programs offer separate courses in mathematics,
psychology, and methods of teaching that are taught in different departments.
The difficulty of integrating such courses is compounded when they are
located in different administrative units.

The professional development programs we discuss later in this chapter
all situate their portrayals of mathematics and children’s thinking in contexts
directly relevant to the problems teachers face daily in teaching mathematics.28

This grounding in reality allows knowledge of mathematics and knowledge
of students to be connected in ways that make a difference for instruction
and for learning.  It is not enough, however, for mathematical knowledge and
knowledge of students to be connected; both need to be connected to class-
room practice.  Teachers may know mathematics, and they may know their
students and how they learn.  But they also have to know how to use both
kinds of knowledge effectively in the context of their work if they are to help
their students develop mathematical proficiency.

Similarly, many inservice workshops, presentations at professional meet-
ings, publications for teachers, and other opportunities for teacher learning
focus almost exclusively on activities or methods of teaching and seldom
attempt to help teachers develop their own conceptual understanding of the
underlying mathematical ideas, what students understand about those ideas,
or how they learn them.  Alternative forms of teacher education and profes-
sional development that attempt to teach mathematical content, psychology
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of learning, and methods of teaching need to be developed and evaluated to
see whether prospective and practicing teachers from such programs can draw
appropriate connections and apply the knowledge they have acquired to teach
mathematics effectively.

Instructional Routines

The second basic component of teaching proficiency is the development
of instructional routines.  Just as students who have acquired procedural flu-
ency can perform calculations with numbers efficiently, accurately, and flex-
ibly with minimal effort, teachers who have acquired a repertoire of instruc-
tional routines can readily draw upon them as they interact with students in
teaching mathematics.  Some routines concern classroom management, such
as how to get the class started each day and procedures for correcting and
collecting homework.  Other routines are more grounded in mathematical
activity.  For example, teachers need to know how to respond to a student
who gives an answer the teacher does not understand or who demonstrates a
serious misconception.  They need to know how to deal with students who
lack critical prerequisite skills for the day’s lesson.  Teachers need business-
like ways of dealing with situations like these that occur on a regular basis so
that they can devote more of their attention to the more serious issues facing
them.  When teachers have several ways of approaching teaching problems,
they can try a different approach if one does not work.

Researchers have shown that expert teachers have a large repertoire of
routines at their disposal.29   They can choose among a number of approaches
for teaching a given topic or responding to a situation that arises in their classes.
Novice teachers, in contrast, have a limited range of routines and often can-
not respond appropriately to situations.  Expert teachers not only have access
to a range of routines, they also can apply them flexibly, know when they are
appropriate, and can adapt them to fit different situations.

Strategic Competence

The third component of teaching proficiency is strategic competence.
Although teachers need a range of routines, teaching is very much a problem-
solving activity.30   Like other professionals, teachers are constantly faced with
decisions in planning instruction, implementing those plans, and interacting
with students.31   Useful guidelines are seldom available for figuring out what
to teach when, how to teach it, how to adapt material so that it is appropriate
for a given group of students, or how much time to allow for an activity.  On
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the spot, teachers need to find out what a student knows, choose how to
respond to a student’s question or statement, and decide whether to follow a
student’s idea.  These are problems that every teacher faces every day, and
most do not have readymade solutions.

Conceptual understanding of the knowledge required to teach for profi-
ciency can help equip teachers to deal intelligently with these problems.  It is
misleading to claim that teachers actually solve such problems in the sense of
solving a mathematical problem.  There is never an ideal solution to the more
difficult problems of teaching, but teachers can learn to contend with these
problems in reasonable ways that take into account the mathematics that stu-
dents are to learn; what their students understand and how they may best
learn it; and representations, activities, and teaching practices that have proven
most effective in teaching the mathematics in question or that have been
effective in teaching related topics.

Teacher education and professional development programs that take into
account the strategic decision making in teaching can help prepare teachers
to be more effective in solving instructional problems.  Rather than being
designed to resolve teachers’ problems, programs of teacher education and
professional development can engage prospective and practicing teachers in
the analysis of instructional problems and potential ways of dealing with them.
Teachers can learn to recognize that teaching involves solving problems and
that they can address these problems in reasonable and intelligent ways.

Adaptive Reasoning

The fourth component of teaching proficiency is adaptive reasoning.
Teachers can learn from their teaching by analyzing it: the difficulties their
students have encountered in learning a particular topic; what the students
have learned; how the students responded to particular representations, ques-
tions, and activities; and the like.32   Teachers can become reflective prac-
titioners, and reflection is essential in improving their practice.  The focus of
teachers’ reflection and the tools they use shape the nature of that reflection
and affect whether, what, and how they learn from it.  Many successful pro-
grams of teacher education and professional development engage teachers in
reflection, but the reflection, or perhaps more appropriately the analysis, is
grounded in specific examples.  In those programs, teachers engage in analyses
in which they are asked to provide evidence to justify claims and assertions.
As with other complex activities, teacher learning can be enhanced by making
more visible the goals, assumptions, and decisions involved in the practice of
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teaching.33   The implications for teacher education and professional devel-
opment is that teachers engage not only in learning methods of teaching but
also in reflecting on them and justifying and explaining them in relation to
such matters as the mathematics being taught, the goals for students, the
conceptions and misconceptions that students have about the mathematics,
the difficulties they have in learning it, and the representations that are most
effective in communicating essential ideas.

One of the ways that the professional development programs described
below foster teachers’ ability to justify and explain classroom practices is that
teachers examine familiar artifacts from practice, and those artifacts help them
focus their attention and develop a common language for discussion.  In some
cases the program leaders provide the artifacts; in others the artifacts come
from the teachers’ classrooms.  Teachers are often asked to pose a particular
mathematical problem to their classes and to discuss the mathematical think-
ing that they observe.

Productive Disposition

The final component of teaching proficiency is a productive disposition
about one’s own knowledge, practice, and learning.  Just as students must
develop a productive disposition toward mathematics such that they believe
that mathematics makes sense and that they can figure it out, so too must
teachers develop a similar productive disposition.  Teachers should think that
mathematics, their understanding of children’s thinking, and their teaching
practices fit together to make sense and that they are capable of learning
about mathematics, student mathematical thinking, and their own practice
themselves by analyzing what goes on in their classes.  Teachers whose learning
becomes generative perceive themselves as in control of their own learning.34

They learn by listening to their students and by analyzing their teaching prac-
tices.  Not only do they develop more elaborated conceptions of how stu-
dents’ mathematical thinking develops by listening to their students, but they
also learn mathematical concepts and strategies from their interactions with
students.  The teachers become more comfortable with mathematical ideas
and ripe for a more systematic view of the subject.

Teachers whose learning becomes generative see themselves as lifelong
learners who can learn from studying curriculum materials35  and from analyzing
their practice and their interactions with students.  Programs of teacher edu-
cation and professional development that portray to the participants that they
are in control of their own learning help teachers develop a productive dispo-
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sition toward learning about mathematics, student mathematical thinking,
and teaching practice.  Programs that provide readymade, worked-out solu-
tions to teaching problems should not expect that teachers will see them-
selves as in control of their own learning.

Programs to Develop Proficient Teaching

In a teacher preparation program, teachers clearly cannot learn all they
need to know about the mathematics they will teach, how students learn that
mathematics, and how to teach it effectively.  Consequently, some authori-
ties have recommended that teacher education be seen as a professional con-
tinuum, a career-long process.36   Hence, teachers need a basis for ongoing
learning.  They need to be able to adapt to new curriculum frameworks, new
materials, advances in technology, and advances in research on student think-
ing and teaching practice.  They have to learn how to learn, whether they are
learning about mathematics, students, or teaching.  Teachers can continue to
learn by participating in various forms of professional development.  But formal
professional development programs represent only one source for continued
learning.  Teachers’ schools and classrooms can also become places for teachers
as well as students to learn.37   Professional development programs that engage
teachers in inquiry in their classrooms can provide the basis for teachers’ learn-
ing to become generative so that their knowledge, conceptions, and practice
continue to grow and evolve.38

Programs of teacher education and professional development based on
research integrate the study of mathematics and the study of students’ learn-
ing so that teachers will forge connections between the two.  Some of these
programs begin with mathematical ideas from the school curriculum and ask
teachers to analyze those ideas from the learners’ perspective.  Other pro-
grams use students’ mathematical thinking as a springboard to motivate
teachers’ learning of mathematics.  Still others begin with teaching practice
and move toward a consideration of mathematics and students’ thinking.  We
consider below examples of four such program types that represent an array
of alternative approaches to developing integrated proficiency in teaching
mathematics.39

Focus on Mathematics

Some teacher preparation and professional development programs attempt
to enhance prospective and practicing teachers’ knowledge of mathematics
by having them probe more deeply fundamental ideas from elementary school
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mathematics, often through problem solving.  For example, prospective el-
ementary school teachers may take a mathematics course that focuses, in part,
on rational numbers or proportionality rather than the usual college algebra or
calculus.  Such courses are offered in many universities, but they are seldom
linked to instructional practice.  The lesson depicted in Box 10-1 comes from
a course in which connections to practice are being made.

Box 10-1

Investigating Division of Fractions in a
Mathematics Course

The prospective teachers stare at the board, trying to figure out what the instructor
is asking them to do.  After calculating the answer to a simple problem in the
division of fractions (13

4  ÷ 1
2  = ?) and recalling the old algorithm—invert and mul-

tiply—most of them have come up with the answer, 3 1
2 .  It is familiar content, and

although they have not had occasion to divide fractions recently, they feel com-
fortable, remembering their own experiences in school mathematics and what
they learned.  But now, what are they being asked?  The instructor has challenged
them to consider why they are getting what seems to be an answer ( 3 1

2 ) that is
larger than either of the numbers in the original problem (13

4  and 1
2 ).  “Doesn’t

dividing make numbers smaller?” she asks.  Confused, they are suddenly stuck.
None of them noticed this fact before.

The instructor proposes a new task: “See if you can make up a story problem,
devise a real-world context, or draw a picture that will go with one and three fourths
divided by a half.  Can you come up with an example or a model that shows what
is going on with dividing one and three fourths by one half?”

The prospective teachers set to work, some in pairs, some alone.  The instructor
walks around, watching them work, and occasionally asking a question.  Most
have drawn pictures like those below:
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They have written problems like the following:

I have two pizzas.  My little brother eats one quarter of one of them and
then I have one and three quarters pizzas left.  My sister is very hungry, so
we decide to split the remaining pizza between us.  We each get 3 1

2  pieces
of pizza.

One pair of students has a different problem:

I have 13
4  cups of sugar.  Each batch of sesame crackers takes 1

2  cup of
sugar.  How many batches of crackers can I make?

And another pair has envisioned filling 1
2 -liter containers, starting with 13

4  liters of
water.

After about 10 minutes, the instructor invites students to share their problems
with the rest of the class.  One student presents the pizza situation above.  Most
students nod appreciatively.  When a second student offers the sesame cracker
problem, most nod again, not noticing the difference.  The instructor poses a ques-
tion: How does each problem we heard connect with the original computation?
Are these two problems similar or different, and does it matter?

Through discussion the students gradually come to recognize that, in the pizza
problem, the pizza has been divided in half and that the answer is in terms of
fourths—that is, that the 3 1

2  pieces are fourths of pizzas.  In the case of the sesame
cracker problem, the answer of 3 1

2  batches is in terms of half cups of sugar.  In the
first instance, they have represented division in half, which is actually division by
two; in the second they have represented division by one half.

           

           

2 pizzas

2 pizzas, with one quarter eaten

sharing the remaining pizza with
one other person

A

A

A

A

B

B BB

continued
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The instructor moves into a discussion of different interpretations of division: shar-
ing and measurement.  After the students observe that the successful problems—
involving the sesame crackers and the liters of water—are measurement problems,
she asks them to try to develop a problem situation for 13

4  ÷ 1
2  that represents a

sharing division.  In other words, could they make a sensible problem in which the
1
2  is not the unit by which the whole is being measured, but instead is the number
of units into which the whole has been divided?

For homework, the instructor asks the students to try making representations for
several other division situations, which she chooses strategically, and finally asks
them to select two numbers to divide that they think are particularly good choices
and to say why.  She also asks them to try to connect what they have done in class
today with the familiar algorithm of “invert and multiply.”

In this excerpt from a university mathematics course, the prospective
teachers are being asked to unpack familiar arithmetic content, to make explicit
the ideas underlying the procedures they remember and can perform.
Repeatedly throughout the course, the instructor poses problems that have
been strategically designed to expose concepts on which familiar procedures
rest.

One principle behind the instructor’s efforts is to engage the prospective
teachers in a kind of mathematical work that focuses on developing their
proficiency with the mathematical content of the elementary school curricu-
lum.  A second principle is to link that work with larger mathematical ideas
and structures.  For example, the lesson on the division of fractions is part of
a larger agenda that includes understanding division, its relationship to frac-
tions and to multiplication, and the meaning and representation of opera-
tions.  Moreover, throughout the development of these ideas and connec-
tions, the prospective teachers work with whole and rational numbers,
considering how the mathematical world looks inside these nested systems.

The overriding purpose of a course like this is to provide prospective
teachers with ample opportunities to learn fundamental ideas of school math-
ematics, how they are related, and how students come to learn them.  The

Box 10-1 Continued
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ways in which the prospective teachers’ opportunities to learn are designed
may at times situate the mathematical questions within apparently pedagogi-
cal contexts (e.g., make a story problem), so that the kind of mathematical
work they do in the course helps them develop mathematical proficiency in
ways they can use in teaching.  But the course is not about how to teach, nor
about how children learn.  It is explicitly and deliberately a sustained oppor-
tunity for prospective teachers to learn mathematical ideas in ways that will
equip them with mathematical resources needed in teaching.

Focus on Student Thinking

The successful programs that focus on mathematics and children’s think-
ing are programs grounded in practice.  Teachers do not learn abstract con-
cepts about mathematics and children.  In the programs, teachers look at
problem-solving strategies of real students, artifacts of student work, cases of
real classrooms, and the like.  Furthermore, the teachers in these programs
are challenged to relate what they learn to their own students and their own
instructional practices.  They learn about mathematics and students both in
workshops and by interacting with their own students.  Specific opportunity
is provided for the teachers to discuss with one another how the ideas they
are encountering influence their practice and how their practice influences
what they are learning.  Discussions in these programs are conducted in a
spirit of supporting the teachers’ inquiry.  The analysis of children’s thinking
is not presented as a fixed body of knowledge, and the teachers engage not
only in inquiry about how to apply knowledge about students’ thinking in
planning and implementing instruction but also in inquiry to deepen their
understanding of students’ thinking.40

The workshop described in Box 10-2 forms part of a professional devel-
opment program designed to help teachers develop a deeper understanding
of some critical mathematical ideas, including the equality sign.  The pro-
gram, modeled after Cognitively Guided Instruction (CGI), which has proven
to be a highly effective approach,41  assists teachers in understanding how to
help their students reason about number operations and relations in ways
that enhance the learning of arithmetic and promote a smoother transition
from arithmetic to algebra.42   This particular workshop was directed at illu-
minating students’ misconceptions about equality and considering how those
misconceptions might be addressed.

Several features of this example of professional development are worth
noting.  The teachers focus on children’s thinking about a critical mathematical
idea.  Although they begin by considering how children think, the teachers
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Box 10-2

Investigating the Concept of Equality in a
Professional Development Group

Before attending the workshop, participating teachers ask their students to find
the number that they could put in the box to make the following open-number
sentence a true number sentence: 8 + 4 =  + 5.  At the workshop, the teachers
share their findings with the other participants.  Fewer than 10% of the students in
any teacher’s class solved the problem correctly.*  The majority of the incorrect
responses were 12, with a number of responses of 17.  These findings, which
surprised most teachers, have led them to begin to listen to their students, and a
number of teachers have engaged their students in a discussion of the reasons for
their responses.  The teachers’ experiences have precipitated a discussion in the
workshop of how students are thinking about equality and how these misconcep-
tions might have been acquired.  The discussion generates insights about how
children are thinking and what teachers can learn by listening to their students.
Although the teachers recognize the students’ errors on this problem, however,
they do not have a good idea of how they would address the misconception.

The workshop leader introduces several true and false number sentences as a
context to challenge children’s incorrect notions of equality.  Examples include
8 = 3 + 5, 17 + 9 = 36, 23 = 23, 17 + 26 = 27 + 16, and 76 + 7 = 76.  The task is to decide
whether the sentence is true or false.  Sometimes the decision requires calculation
(e.g., 74 – 57 = 17), and sometimes it does not (e.g., 67 + 96 = 96 + 67).  The teachers
work in small groups to construct true and false number sentences they might use
to elicit various views of equality.  Using these sentences, their students could
engage in explorations that might lead to understanding equality as a relation.
The sentences could also provide opportunities for discussions about how to re-
solve disagreement and develop a mathematical argument.  The teachers work
together to consider how their students might respond to different number sen-
tences and which number sentences might produce the most fruitful discussion.

* These responses and this level of success are typical for classes ranging from
grade 1 to 6.

SOURCE: Falkner, Levi, and Carpenter, 1999. Used by permission of the authors.

must also examine their own conceptions.  Properties of equality that the
teachers have not usually examined carefully before emerge in their discus-
sions of students’ conceptions and misconceptions in using the equals sign.
The teachers also begin to ponder how notation is used and how ideas are
justified in mathematics.  A central feature of their discussion is that math-
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ematics and children’s thinking are set in a context that relates to their prac-
tice.  The mathematical ideas and how children think about them are seen in
classroom interactions.  The problems discussed in the workshop are prob-
lems that the teachers can and do use in their classes; the interactions about
mathematics that occur in the teachers’ classes provide a setting for work-
shop discussion of mathematical ideas and children’s thinking.  The activi-
ties taking place in the workshop and in the teachers’ classrooms have the
same goals.  In both places the teachers engage in inquiry to gain a deeper
understanding of mathematics, students’ thinking about that mathematics,
and how to plan their instruction so as to foster the development of students’
mathematical thinking.

Before beginning a professional development program similar to the one
described above, teachers participating in the program found that fewer than
10% of their students at any grade demonstrated a relational concept of
equality.  After one year of the program, the percentage of students in their
classes who demonstrated a relational concept of equality ranged from 66%
in first and second grades to 84% in sixth grade.43

Although these programs place a heavy emphasis on children’s thinking,
understanding children’s mathematical thinking depends upon understand-
ing the mathematics with which that thinking is engaged.  The programs do
not deal with general theories of learning.  They concentrate instead on under-
standing children’s thinking in specific domains of mathematical content.
Understanding the mathematics of the domain being studied is a prerequi-
site to understanding children’s thinking in that domain.  For example, to
understand the different strategies that children use to solve different prob-
lems, teachers must understand the semantic differences between problems
represented by the same operation, as illustrated by the sharing and
measurement examples of dividing cookies described above in Box 10-1.  In
programs focusing on children’s mathematical thinking, teachers learn to rec-
ognize and appreciate the mathematical significance of children’s informal
methods for solving problems, how these methods evolve into more abstract
and more powerful methods, and how the informal methods could serve as a
basis for students to learn formal concepts and procedures with understanding.

Professional development programs focusing on helping teachers under-
stand both the mathematics of specific content domains and students’ math-
ematical thinking in that domain have consistently been found to contribute
to major changes in teachers’ instructional practices that have resulted in sig-
nificant gains in students’ achievement.44   For example, in an experimental
study of CGI with first-grade teachers, teachers who had taken a month-long
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workshop on children’s development of addition and subtraction concepts
taught problem solving significantly more and number facts significantly less
than did teachers who had instead taken two 2-hour workshops on nonroutine
problem solving.  Students in the CGI teachers’ classes performed as well as
students in the comparison teachers’ classes on a standardized computation
test and outperformed students in the comparison teachers’ classes on com-
plex addition and subtraction word problems.45   After teachers have studied
the development of children’s mathematical thinking, they tend to place a
greater emphasis on problem solving, listen to their students more and know
more about their students’ abilities, and provide greater opportunity for their
students to use a variety of solution methods.  Gains in student achievement
generally have been in the areas of understanding and problem solving, but
none of the programs has led to a decline in computational skills, despite
their greater emphasis on higher levels of thinking.

Focus on Cases

Case examples are yet another way to build the connections between
knowledge of mathematics, knowledge of students, and knowledge of prac-
tice.  Although the cases focus on classroom episodes, the discussions the
teachers engage in as they reflect on the cases emphasize mathematics con-
tent and student thinking.  The cases involve instruction in specific math-
ematical topics, and teachers analyze the cases in terms of the mathematics
content being taught and the mathematical thinking reflected in the work
the children produce and the interactions they engage in.  Cases can be pre-
sented in writing or using multiple media such as videotapes and transcrip-
tions of lessons.  The episode in Box 10-3 is taken from a case discussion in
which the case is presented through video recordings of lessons from an entire
year that were captured on computer disks, together with the teacher’s plans
and reflections and with samples of student work.

Notable in this example is how the teachers’ opportunities to consider
mathematical ideas—in this case, functions—are set in the context of the use
of those ideas in teaching.  These teachers are probing the concept of func-
tions from several overlapping perspectives.  They dig into the mathematics
through close work on and analysis of the task that the teacher posed.  They
also explore the ideas by investigating students’ work on the problem.  And
they revisit the mathematical ideas by looking carefully at how the teacher
deals with the mathematics during the lesson.
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Box 10-3

Investigating Mathematical Tasks Using Cases from
Real Practice

A dozen teachers are gathered around a table.  They have read a case of a teacher
teaching a lesson on functions.  The written case includes the task the teacher
used and a detailed narrative account of what happened in the class as students
worked on the problem.  The teacher used the following task:

Sara has made several purchases from a mail-order company.  She has
found that the company charges $12.90 to ship an 8-kg package, $6.40 to
ship a 3-kg package, and $9.00 to ship a 5-kg package.  Sara decides that
the company must be using a simple rule to determine how much to charge
for shipping.  Help her figure out how much it would most likely cost to
ship a 1-kg package and how much each additional kilogram would cost.

Photocopies of students’ work are available, as are pages from the curriculum
materials being used.  Before the teachers studied the case and the accompanying
materials, they solved the mathematical problem themselves.

To begin the discussion, the workshop leader asks the teachers to look closely at
one segment of the lesson in which two students are presenting solutions to the
problem.  She asks them to interpret what each student did and to compare the
two solutions.  This request precipitates an animated discussion in which the
teachers probe the students’ representations and explanations.  One teacher notes
that a third student has a method that is similar to the first student’s, but several
others argue that the method is not similar.  The teachers continue to analyze the
students’ thinking, with repeated careful use of the reproductions of the students’
work.  At one point one teacher raises a mathematical point, asking whether there
might be something particularly significant in one student’s idea.

The teachers launch into a discussion of the mathematics for several minutes.
They note that if the given values (weight, cost) are graphed, the points lie on the
same straight line.  Reading the graph provides a solution.  Also, by asking how
much each additional kilogram would cost, the problem suggests there is a constant
difference that can be used in solving it.  Since the 2-kg difference between 5 kg and
3 kg is $2.60, and the 3-kg difference between 8 kg and 5 kg is $3.90, the simplest rule
would be that each additional kilogram costs $1.30.  A linear function (y = 1.30x + 2.50)
fits the three values, and one can use constant differences or a graph to find this
function (although that is not necessary to answer the two questions).

After a much-needed break, the leader refocuses the discussion on the teacher’s
moves throughout the episode that they have been discussing.  At first, several

continued
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teachers comment that the teacher doesn’t seem to be doing much.  “She is more
of a guide,” one teacher remarks.  “It is really a student-centered class.”  “Is it?”
asks the leader.  She asks them to analyze the text closely and try to categorize
what the teacher is doing.

This discussion yields surprises for most of the teachers.  Suddenly the intricate
work that the teacher is doing becomes visible.  They see her posing strategic
questions, using particular aspects of the students’ solutions to focus the class
discussion, providing direction at some moments and letting the students struggle
a bit at others.  They begin to describe and name the different moves she makes.
One teacher becomes intrigued with how the teacher helps students express their
ideas by asking questions to support their explanations before she asks other stu-
dents to comment.  It is quite clear that this is no generic skill, for the mathematical
sensitivity and knowledge entailed are quite visible throughout.  Another teacher
notices how the teacher’s own mathematical knowledge seems to shape her skilled
questioning.  The teachers become fascinated with what looks like an important
missed opportunity to unpack a common misconception about function.  Specu-
lating about why that happened leads them to a productive conversation about
what one might do to seize and capitalize on the opportunity.

The session ends with the teachers agreeing to bring back one mathematical task
from their own work on functions and compare it with the task used in the case.
Several are overheard to be discussing features of this problem that seem particu-
larly fruitful and that have them thinking about how they frame problems for their
students.  The group briefly discusses some ways to vary the problem to make it
either simpler or more complex.  The leader then closes by summarizing some of
the mathematical issues embedded in the task.  She points out that it is not obvi-
ous what the value of 2.50 means in the algebraic expression of the function.  It is
the cost of sending a package of zero weight, an idea that does not appear any-
where in the problem itself or in real life.  She also says that it is important to
understand that x refers to whole numbers only.  Finally, she notes that with a
different function, the differences might not be constant.  The assumption of con-
stant differences is one suggested by the problem and common in situations like
those involving shipping costs, but it is not necessarily always warranted.

Studies of teachers’ learning in professional development programs that
have used classroom cases show that the teachers learned mathematics from
studying such cases.  They gained a greater repertoire of ways to represent
mathematical ideas, were able to articulate connections among mathematical
ideas, and developed a deeper understanding of mathematical structures.46

Box 10-3 Continued
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As a result of their work in this program, the teachers became more likely to
bring out students’ reasoning in discussions and to invite both public and
private reflection on the students’ ideas.  At least some of the teachers con-
tinued the process of learning mathematics by examining the mathematical
work of their own students in their own classrooms.

The case-based programs that focus on classroom instruction treat the
cases as problematic situations that serve as a basis for discussion and inquiry
rather than as models of instruction for the teachers to emulate.  Teachers
analyze classes not to figure out how they can do what the teacher in the case
example did; instead, the case discussions provide models for inquiry that
teachers may apply to analyze their own students’ mathematical thinking and
their own teaching practices.

Focus on Lesson Study

A somewhat different approach to professional development is repre-
sented by so-called lesson study groups, which are used in Japan (see Box 10-4).
These study groups focus on the development and refinement of one spe-
cific mathematical lesson, called a “research lesson.”  Teachers work together
to consider a specific difficulty entailed in teaching some important piece of
mathematics.  They design a lesson, and one member of the group teaches it
while the others watch.  Afterwards they discuss what happened in light of
their anticipations and goals.  Based on this experience, the group revises the
lesson and someone else teaches it.  The cycle continues of trying the lesson,
discussing and analyzing how it worked, and revising it.  Through such lesson
study groups, teachers engage in very detailed analyses of mathematics, of
students’ mathematical thinking and skill, of teaching and learning.  Although
the process results in a well-crafted lesson, in the process of developing and
refining the lesson, teachers work on analyzing students’ responses and learn
from and revise their own teaching practices.  Their knowledge becomes a
basis for further learning through the study of a lesson.47

Lesson study groups might follow somewhat different formats and sched-
ules than the one described above, but most meet regularly during the year
and focus on improving a very few lessons with clear learning goals.  Using
the lesson as the unit of analysis and improvement, the teachers are encour-
aged to improve their knowledge of all aspects of teaching within the context
of their own classrooms—knowledge of mathematics, of students’ thinking,
of pedagogy, of curriculum, and of assessment.  Although the year’s activity
yields a collective product that can be shared with other teachers (the group’s
written report), Japanese teachers say that the primary value of lesson study
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Box 10-4

The Japanese Lesson Study

Small groups of teachers form within the school around areas of common teach-
ing interests or responsibilities (e.g., grade-level groups in mathematics or in sci-
ence).  Each group begins by formulating a goal for the year.  Sometimes the goal
is adapted from national-level recommendations (e.g., improve students’ prob-
lem-solving skills) and is translated into a more specific goal (e.g., improve stu-
dents’ understanding of problems involving ratios).  The more specific goal might
focus on a curriculum topic that has been problematic for students in their class-
rooms.  A few lessons then are identified that ordinarily deal with that topic, and
the group begins its yearlong task to improve those lessons.

Lesson study groups meet regularly, often once a week after school (e.g., 3:00 to
5:00 pm), to develop, test, and refine the improved lessons.  Some groups divide
their work into three major phases, each taking about one third of the school year.
During the first phase, teachers do research on the topic, reading and sharing rel-
evant research reports and collecting information from other teachers on effective
approaches for teaching the topic.  During the second phase, teachers design the
targeted lessons (often just one, two, or perhaps three lessons).  Important parts
of the design include (a) the problems that will be presented to students, (b) the
teachers’ predictions about how students will solve the problems, and (c) how
these different solution methods are to be integrated into a productive class dis-
cussion.

During the third phase, the lessons are tested and refined.  The first test often
involves one of the group members teaching a lesson to his or her class while the
other group members observe and take notes.  After the group refines the lesson,
it might be tested with another class in front of all the teachers in the school.  In
this case, a follow-up session is scheduled, and the lesson study group engages
their colleagues in a discussion about the lesson, receiving feedback about its
effectiveness.

The final task for the group is to prepare a report of the year’s work, including a
rationale for the approach used and a detailed plan of the lesson, complete with
descriptions of the different solution methods students are likely to present and
the ways in which these can be orchestrated into a constructive discussion.
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is teacher development.  Working directly on improving teaching is their means
of becoming better teachers.

Communities of Practice

Learning in ways that continue to be generative over time is best done in
a community of fellow practitioners and learners, as illustrated by the Japa-
nese lesson study groups.  The foregoing discussion of teacher proficiency
focused on individual teachers’ knowledge, but teaching proficiency does
not easily develop and is not generally sustained in isolation.  Studies of school
reform efforts suggest that professional development is most effective when
it extends beyond the individual teacher.48   Collaboration among teachers
provides support for them to engage in the kinds of inquiry that are needed
to develop teaching proficiency.  Professional development can create contexts
for teacher collaboration, provide a focus for the collaboration, and provide a
common frame for interacting with other teachers around common problems.
When teachers have opportunities to continue to participate in communities
of practice that support their inquiry, instructional practices that foster the
development of mathematical proficiency can more easily be sustained.

The focus of teacher groups matters for what teachers learn from their
interactions with others.  When sustained work is focused on mathematics,
on students’ thinking about specific mathematical topics, or on the detailed
work of designing and enacting instruction, the resources generated for teach-
ers’ own practice are greater than when there is less concrete focus.  For
example, general sharing, or discussion of approaches, ungrounded in the
particulars of classroom artifacts, while possibly enjoyable, less often produces
usable knowledge that can make a difference for teachers’ work.

Mathematics Specialists

Because of the specialized knowledge required to teach mathematics,
there has been increased discussion recently of the use of mathematics spe-
cialists, particularly in the upper elementary and middle school grades.  The
Learning First Alliance, comprising 12 major education groups, recommends
that mathematics teachers from grades 5 through 9 have “a solid grounding in
the coursework of grades K-12 and the teaching of middle grades mathemat-
ics.”49   The Conference Board of the Mathematical Sciences recommends in
its draft report that mathematics in middle grades should be taught by math-
ematics specialists, starting at least in the fifth grade.50   They further recom-
mend that teachers of middle school mathematics have taken 21 semester
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hours of mathematics, 12 of which are on fundamental ideas of school math-
ematics appropriate for middle school teachers.

Implicit in the recommendations for mathematics specialists is the notion
of the mathematics specialist in a departmental arrangement.  In such
arrangements, teachers with a strong background in mathematics teach math-
ematics and sometimes another subject, depending on the student popula-
tion, while other teachers in the building teach other subject areas.  Depart-
mentalization is most often found in the upper elementary grades (4 to 6).
Other models of mathematics specialists are used, particularly in elementary
schools, which rarely are departmentalized.  Rather than a specialist for all
mathematics instruction, a single school-level mathematics specialist is some-
times used.  This person, who has a deep knowledge of mathematics and
how students learn it, acts as a resource for other teachers in the school.  The
specialist may consult with other teachers about specific issues, teach dem-
onstration lessons, observe and offer suggestions, or provide special training
sessions during the year.  School-level mathematics specialists can also take
the lead in establishing communities of practice, as discussed in the previous
section.  Because many districts do not have enough teachers with strong
backgrounds in mathematics to provide at least one specialist in every school,
districts instead identify district-level mathematics coaches who are respon-
sible for several schools.  Whereas a school-level specialist usually has a regu-
lar or reduced teaching assignment, district-level specialists often have no
classroom teaching assignment during their tenure as a district coach.  The
constraint on all of the models for mathematics specialists is the limited num-
ber of teachers, especially at the elementary level, with strong backgrounds
in mathematics.  For this reason, summer leadership training programs have
been used to develop mathematics specialists.

Effective Professional Development

Perhaps the central goal of all the teacher preparation and professional
development programs is in helping teachers understand the mathematics they
teach, how their students learn that mathematics, and how to facilitate that
learning.  Many of the innovative programs described in this chapter make
serious efforts to help teachers connect these strands of knowledge so that
they can be applied in practice.  Teachers are expected to explain and justify
their ideas and conclusions.  Teachers’ ideas are respected, and they are
encouraged to engage in inquiry.  They have opportunities to develop a pro-
ductive disposition toward their own learning about teaching that contrib-
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utes to their learning becoming generative.  Teachers are not given readymade
solutions to teaching problems or prescriptions for practice.  Instead, they
adapt what they are learning and engage in problem solving to deal with the
situations that arise when they attempt to use what they learn.

Professional development beyond initial preparation is critical for devel-
oping proficiency in teaching mathematics.  However, such professional devel-
opment requires the marshalling of substantial resources.  One of the critical
resources is time.  If teachers are going engage in inquiry, they need repeated
opportunities to try out ideas and approaches with their students and con-
tinuing opportunities to discuss their experiences with specialists in math-
ematics, staff developers, and other teachers.  These opportunities should
not be limited to a period of a few weeks or months; instead, they should be
part of the ongoing culture of professional practice.  Through inquiry into
teaching, teacher learning can become generative, and teachers can continue
to learn and grow as professionals.
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11
CONCLUSIONS AND

RECOMMENDATIONS

To many people, school mathematics is virtually a phenomenon of na-
ture.  It seems timeless, set in stone—hard to change and perhaps not need-
ing to change.  But the school mathematics education of yesterday, which had
a practical basis, is no longer viable.  Rote learning of arithmetic procedures
no longer has the clear value it once had.  The widespread availability of
technological tools for computation means that people are less dependent on
their own powers of computation.  At the same time, people are much more
exposed to numbers and quantitative ideas and so need to deal with math-
ematics on a higher level than they did just 20 years ago.  Too few U.S. stu-
dents, however, leave elementary and middle school with adequate math-
ematical knowledge, skill, and confidence for anyone to be satisfied that all is
well in school mathematics.  Moreover, certain segments of the U.S. popula-
tion are not well represented among those who succeed in learning math-
ematics.  Widespread failure to learn mathematics limits individual possibili-
ties and hampers national growth.  Our experiences, discussions, and review
of the literature have convinced us that school mathematics demands sub-
stantial change.  We recognize that such change needs to be undertaken care-
fully and deliberately, so that every child has both the opportunity and sup-
port necessary to become proficient in mathematics.

In this chapter, we present conclusions and recommendations to help
move the nation toward the change needed in school mathematics.  In the
preceding chapters, we have offered citations of research studies and of theo-
retical analyses, but we recognize that clear, unambiguous evidence is not
available to address many of the important issues we have raised.  It should
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be obvious that much additional research will be needed to fill out the picture,
and we have recommended some directions for that research to take.  The
remaining recommendations reflect our consensus that the relevant data and
theory are sufficiently persuasive to warrant movement in the direction indi-
cated, with the proviso that more evidence will need to be collected along
the way.

Information is now becoming available as to the effects on students’ learn-
ing in new curriculum programs in mathematics that are different from those
programs common today.  Over the coming years, the volume of that informa-
tion is certain to increase.  The community of people concerned with math-
ematics education will need to pay continued attention to studies of the
effectiveness of new programs and will need to examine the available data
carefully.  In writing this report we were able to use few such studies because
they were just beginning to be published.  We expect them collectively to
provide valuable information that will warrant careful review at a later date
by a committee like ours.

Our report has concentrated on learning about numbers, their properties,
and operations on them.  Although number is the centerpiece of pre-K to
grade 8 mathematics, it is not the whole story, as we have noted more than
once.  Our reading of the scholarly literature on number, together with our
experience as teachers, creators, and users of mathematics, has yielded obser-
vations that might be applied to other components of school mathematics
such as measurement, geometry, algebra, probability, and data analysis.  Num-
ber is used in learning concepts and processes from all these domains.

Below we present some comprehensive recommendations concerning
mathematical proficiency that cut across all domains of policy, practice, and
research.  Then we propose changes needed in the curriculum if students are
to develop mathematical proficiency, and we offer some recommendations
for instruction.  Finally, we discuss teacher preparation and professional devel-
opment related to mathematics teaching, setting out recommendations de-
signed to help teachers be more proficient in their work.

Mathematical Proficiency

As a goal of instruction, mathematical proficiency provides a better way
to think about mathematics learning than narrower views that leave out key
features of what it means to know and be able to do mathematics.  Math-
ematical proficiency, as defined in chapter 4, implies expertise in handling
mathematical ideas.  Students with mathematical proficiency understand basic
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concepts, are fluent in performing basic operations, exercise a repertoire of
strategic knowledge, reason clearly and flexibly, and maintain a positive out-
look toward mathematics.  Moreover, they possess and use these strands of
mathematical proficiency in an integrated manner, so that each reinforces the
others.  It takes time for proficiency to develop fully, but in every grade in
school students can demonstrate mathematical proficiency in some form.  In
this report we have concentrated on those ideas about number that are devel-
oped in grades pre-K through 8.  We must stress, however, that proficiency
spans all parts of school mathematics and that it can and should be developed
every year that students are in school.

All young Americans must learn to think mathematically, and they must
think mathematically to learn.  We have elaborated on what such learning
and thinking entail by proposing five strands of mathematical proficiency to
be developed in school.  The overriding premise of our work is that throughout the
grades from pre-K through 8 all students can and should be mathematically
proficient.  That means they understand mathematical ideas, compute fluently,
solve problems, and engage in logical reasoning.  They believe they can make
sense out of mathematics and can use it to make sense out of things in their
world.  For them mathematics is personal and is important to their future.

School mathematics in the United States does not now enable most stu-
dents to develop the strands of mathematical proficiency in a sound fashion.
Proficiency for all demands that fundamental changes be made concurrently
in curriculum, instructional materials, classroom practice, teacher preparation,
and professional development.  These changes will require continuing, coor-
dinated action on the part of policy makers, teacher educators, teachers, and
parents.  Although some readers may feel that substantial advances are al-
ready being made in reforming mathematics teaching and learning, we find
real progress toward mathematical proficiency to be woefully inadequate.
These observations led us to five general recommendations regarding math-
ematical proficiency that reflect our vision for school mathematics.

• The integrated and balanced development of all five strands of math-
ematical proficiency should guide the teaching and learning of school math-
ematics.  Instruction should not be based on extreme positions that students
learn, on the one hand, solely by internalizing what a teacher or book says or,
on the other hand, solely by inventing mathematics on their own.

• Teachers’ professional development should be high quality, sustained,
and systematically designed and deployed to help all students develop math-
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ematical proficiency.  Schools should support, as a central part of teachers’
work, engagement in sustained efforts to improve their mathematics instruc-
tion.  This support requires the provision of time and resources.

• The coordination of curriculum, instructional materials, assessment,
instruction, professional development, and school organization around the
development of mathematical proficiency should drive school improvement
efforts.

• Efforts to improve students’ mathematics learning should be informed
by scientific evidence, and their effectiveness should be evaluated system-
atically.  Such efforts should be coordinated, continual, and cumulative.

• Additional research should be undertaken on the nature, develop-
ment, and assessment of mathematical proficiency.

These recommendations are augmented in the discussion below.  In that dis-
cussion we propose additional recommendations that detail some of the poli-
cies and practices needed if all children are to be mathematically proficient.

Curriculum

The balanced and integrated development of all five strands of math-
ematical proficiency requires that various elements of the school curriculum—
goals, core content, learning activities, and assessment efforts—be coordi-
nated toward the same end.  Achieving that coordination puts heavy demands
on instructional programs, on the materials used in instruction, and on the
way in which instructional time is managed.  The curriculum has to be orga-
nized within and across grades so that time for learning is used effectively.
Instead of cursory and repeated treatments of a topic, the curriculum should
be focused on important ideas, allowing them to be developed thoroughly
and treated in depth.  The unproductive recycling of mathematical content is
to be avoided, but students need ample opportunities to review and consoli-
date their knowledge.

Building on Informal Knowledge

Most children in the United States enter school with an extensive stock
of informal knowledge about numbers from the counting they have done,
from hearing number words and seeing number symbols used in everyday
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life, and from various experiences in judging and comparing quantities.  Many
are also familiar with various patterns and some geometric shapes.  This knowl-
edge serves as a basis for developing mathematical proficiency in the early
grades.  The level of children’s knowledge, however, varies greatly across
socioeconomic and ethnic groups.  Some children have not had the experi-
ences necessary to build the informal knowledge they need before they enter
school.

A number of interventions have demonstrated that any immaturity of
mathematical development can be overcome with targeted instructional
activities.  Parents and other caregivers, through games, puzzles, and other
activities in the home, can also help children develop their informal knowl-
edge and can augment the school’s efforts.  Just as adults in the home can
help children avoid reading difficulties through activities that promote lan-
guage and literacy growth, so too can they help children avoid difficulties in
mathematics by helping them develop their informal knowledge of number,
pattern, shape, and space.  Support from home and school can have a catalytic
effect on children’s mathematical development, and the sooner that support
is provided, the better:

• School and preschool programs should provide rich activities with
numbers and operations from the very beginning, especially for children who
enter without these experiences.

• Efforts should be made to educate parents and other caregivers as to
why they should, and how they can, help their children develop a sense of
number and shape.

Learning Number Names

Research has shown that the English number names can inhibit children’s
understanding of base-10 properties of the decimal system and learning to
use numerals meaningfully.  Names such as “twelve” and “fifteen” do not
make clear to children that 12 = 10 + 2 and 15 = 10 + 5.  These connections are
more obvious in some other languages.

U.S. children, therefore, often need extra help in understanding the base-
ten organization underlying number names and in seeing quantities orga-
nized into hundreds, tens, and ones.  Conceptual supports (objects or diagrams)
that show the magnitude of the quantities and connect them to the number
names and written numerals have been found to help children acquire insight
into the base-10 number system.  That insight is important to learning and
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understanding numerals and also to developing strategies for solving prob-
lems in arithmetic.  So that number names will be understood and used cor-
rectly, we recommend the following:

• Mathematics programs in the early grades should make extensive
use of appropriate objects, diagrams, and other aids to ensure that all children
understand and are able to use number words and the base-10 properties of
numerals, that all children can use the language of quantity (hundreds, tens,
and ones) in solving problems, and that all children can explain their reason-
ing in obtaining solutions.

Learning About Numbers

The number systems of pre-K–8 mathematics—the whole numbers,
integers, and rational numbers—form a coherent structure.  For each of these
systems, there are various ways to represent the numbers themselves and the
operations on them.  For example, a rational number might be represented
by a decimal or in fractional form.  It might be represented by a word, a sym-
bol, a letter, a point or length on a line, or a portion of a figure.  Proficiency
with numbers in the elementary and middle grades implies that students can
not only appreciate these different notations for a number but also can trans-
late freely from one to another.  It also means that they see connections among
numbers and operations in the different number systems.  As a consequence
of many instructional programs, students have had severe difficulty repre-
senting, connecting, and using numbers other than whole numbers.  Innova-
tions that link various representations of numbers and situations in which
numbers are used have been shown to produce learning with understanding.
Creating this kind of learning will require changes in all parts of school math-
ematics to ensure that the following recommendations are implemented:

• An integrated approach should be taken to the development of all
five strands of proficiency with whole numbers, integers, and rational
numbers to ensure that students in grades pre-K–8 can use the numbers flu-
ently and flexibly to solve challenging but accessible problems.  In particular,
procedures for calculation should frequently be linked to various represen-
tations and to situations in which they are used so that all strands are brought
into play.
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• The conceptual bases for operations with numbers and how those
operations relate to real situations should be a major focus of the curricu-
lum.  Addition, subtraction, multiplication, and division should be presented
initially with real situations.  Students should encounter a wide range of
situations in which those operations are used.

• Different ways of representing numbers, when to use a specific rep-
resentation, and how to translate from one representation to another should
be included in the curriculum.  Students should be given opportunities to use
these different representations to carry out operations and to understand
and explain these operations.  Instructional materials should include visual
and linguistic supports to help students develop this representational ability.

Operating with Single-Digit Numbers

Learning to operate with single-digit numbers has long been character-
ized in the United States as “learning basic facts,” and the emphasis has been
on rote memorization of those facts, also known as basic number combina-
tions.  For adults the simplicity of calculating with single-digit numbers often
masks the complexity of learning those combinations and the many different
methods children can use in carrying out such calculations.  Research has
shown that children move through a fairly well-defined sequence of solution
methods in learning to perform operations with single-digit numbers, par-
ticularly for addition and subtraction, where rapid general procedures exist.
Children progress from using physical objects for representing problem situ-
ations to using more sophisticated counting and reasoning strategies, such as
deriving one number combination from another (e.g., finding 7 + 8 by know-
ing that it is 1 more than 7 + 7 or, similarly, finding 7 × 6 as 7 more than 7 × 5).
They know that addition and multiplication are commutative and that there
is a relation between addition and subtraction and between multiplication
and division.  They use patterns in the multiplication table as the basis for
learning the products of single-digit numbers.  Instruction that takes such
research into account is needed if students are to become proficient:

• Children should learn single-digit number combinations with un-
derstanding.

• Instructional materials and classroom teaching should help students
learn increasingly abbreviated procedures for producing number combinations
rapidly and accurately without always having to refer to tables or other aids.
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Learning Numerical Algorithms

We believe that algorithms and their properties are important mathemati-
cal ideas that all students need to understand.  An algorithm is a reliable step-
by-step procedure for solving problems.  To perform arithmetic calculations,
children must learn how numerical algorithms work.  Some algorithms have
been well established through centuries of use; others may be invented by
children on their own.  The widespread availability of calculators for per-
forming calculations has greatly reduced the level of skill people need to
acquire in performing multidigit calculations with paper and pencil.  Anyone
who needs to perform such calculations routinely today will have a calculator,
or even a computer, at hand.  But the technology has not made obsolete the
need to understand and be able to perform basic written algorithms for addi-
tion, subtraction, multiplication, and division of numbers, whether expressed
as whole numbers, fractions, or decimals.  Beyond providing tools for compu-
tation, algorithms can be analyzed and compared, which can help students
understand the nature and properties of operations and of place-value notation
for numbers.  In our view, algorithms, when well understood, can serve as a
valuable basis for reasoning about mathematics.

Students acquire proficiency with multidigit numerical algorithms through
a progression of experiences that begin with the students modeling various
problem situations.  They then can learn algorithms that are easily under-
stood because of obvious connections to the quantities involved.  Eventually,
students can learn and use methods that are more efficient and general, though
perhaps less transparent.  Proficiency with numerical algorithms is built on
understanding and reasoning, as well as frequent opportunity for use.

Two recommendations reflect our view of the role of numerical algorithms
in grades pre-K–8:

• For addition, subtraction, multiplication, and division, all students
should understand and be able to carry out an algorithm that is general and
reasonably efficient.

• Students should be able to use adaptive reasoning to analyze and
compare algorithms, to grasp their underlying principles, and to choose with
discrimination algorithms for use in different contexts.
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Using Estimation and Mental Arithmetic

The accurate and efficient use of an algorithm rests on having a sense of
the magnitude of the result.  Estimation techniques enable students not only
to check whether they are performing an operation correctly but also to decide
whether that operation makes sense for the problem they are solving.

The base-10 structure of numerals allows certain sums, differences, prod-
ucts, and quotients to be computed mentally.  Activities using mental arith-
metic develop number sense and increase flexibility in using numbers.  Mental
arithmetic also simplifies other computations and estimations.  For example,
dividing by 0.25 is the same as multiplying by 4, which can be found by
doubling twice.  Whether or not students are performing a written algorithm,
they can use mental arithmetic to simplify certain operations with numbers.
Techniques of estimation and of mental arithmetic are particularly important
when students are checking results obtained from a calculator or computer.
If children are not encouraged to use the mental computational procedures
they have when entering school, those procedures will erode.  But when
instruction emphasizes estimation and mental arithmetic, conceptual under-
standing and fluency with mental procedures can be enhanced.  Our recom-
mendation about estimation and computation, whether mental or written, is
as follows:

• The curriculum should provide opportunities for students to develop
and use techniques for mental arithmetic and estimation as a means of pro-
moting a deeper number sense.

Representing and Operating with Rational Numbers

Rational numbers provide the first number system in which all the op-
erations of arithmetic, including division, are possible.  These numbers pose
a major challenge to young learners, in part because each rational number can
represent so many different situations and because there are several different
notational schemes for representing the same rational number, each with its
own method of calculation.

An important part of learning about rational numbers is developing a clear
sense of what they are.  Children need to learn that rational numbers are
numbers in the same way that whole numbers are numbers.  For children to
use rational numbers to solve problems, they need to learn that the same
rational number may be represented in different ways, as a fraction, a deci-
mal, or a percent.  Fraction concepts and representations need to be related
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to those of division, measurement, and ratio.  Decimal and fractional repre-
sentations need to be connected and understood.  Building these connec-
tions takes extensive experience with rational numbers over a substantial
period of time.  Researchers have documented that difficulties in working
with rational numbers can often be traced to weak conceptual understand-
ing.  For example, the idea that a fraction gets smaller when its denominator
becomes larger is difficult for children to accept when they do not under-
stand what the fraction represents.  Children may try to apply ideas they have
about whole numbers to rational numbers and run into trouble.  Instructional
sequences in which more time is spent at the outset on developing meaning
for the various representations of rational numbers and the concept of unit
have been shown to promote mathematical proficiency.

Research reveals that the kinds of errors students make when beginning
to operate with rational numbers often come because they have not yet devel-
oped meaning for these numbers and are applying poorly understood rules
for whole numbers.  Operations with rational numbers challenge students’
naïve understanding of multiplication and division that multiplication “makes
bigger” and division “makes smaller.”  Although there is limited research on
instructional programs for developing proficiency with computations involv-
ing rational numbers, approaches that build on students’ intuitive understand-
ing and that use objects or contexts that help students make sense of the
operations offer more promise than rule-based approaches.

We make the following recommendation concerning the rational numbers:

• The curriculum should provide opportunities for students to develop
a thorough understanding of rational numbers, their various representa-
tions including common fractions, decimal fractions, and percents, and
operations on rational numbers.  These opportunities should involve con-
necting symbolic representations and operations with physical or pictorial
representations, as well as translating between various symbolic represen-
tations.

Extending the Place-Value System

The system of Hindu-Arabic numerals—in which there is a decimal point
and each place to the right and the left is associated with a different power of
10—is one of humanity’s greatest inventions for thinking about and operat-
ing with numbers.  Mastery of that system does not come easily, however.
Students need assistance not only in using the decimal system but also in
understanding its structure and how it works.
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Conceptual understanding and procedural fluency with multidigit num-
bers and decimal fractions require that students understand and use the base-
10 quantities represented by number words and number notation.  Research
indicates that much of students’ difficulty with decimal fractions stems from
their failure to understand the base-10 representations.  Decimal representa-
tions need to be connected to multidigit whole numbers as groups getting
10 times larger (to the left) and one tenth as large (to the right).  Referents
(diagrams or objects) showing the size of the quantities in different decimal
places can be helpful in understanding decimal fractions and calculations with
them.  The following recommendation expresses our concern that the decimal
system be given a central place in the curriculum:

• The curriculum should devote substantial attention to developing
an understanding of the decimal place-value system, to using its features in
calculating and problem solving, and to explaining calculation and problem-
solving methods with decimal fractions.

Developing Proportional Reasoning

The concept of ratio is much more difficult than many people realize.
Proportional reasoning is the term given to reasoning that involves the equal-
ity and manipulation of ratios.  Children often have difficulty comparing ratios
and using them to solve problems.  Many school mathematics programs fail
to develop children’s understanding of ratio comparisons and move directly
to formal procedures for solving missing-value proportion problems.  Research
tracing the development of proportional reasoning shows that proficiency
grows as students develop and connect different aspects of proportional rea-
soning.  Further, the development of proportional reasoning can be supported
by having students explore proportional situations in a variety of problem
contexts using concrete materials or through data collection activities.  We
see ratio and proportion as underdeveloped components of grades pre-K–8
mathematics:

• The curriculum should provide extensive opportunities over time
for students to explore proportional situations concretely, and these situa-
tions should be linked to formal procedures for solving proportion problems
whenever such procedures are introduced.
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Using the Number Line

Students often view the study of whole numbers, decimal fractions, com-
mon fractions, and integers as disconnected topics.  One tool that we believe
may be useful in developing numerical understanding and in making con-
nections across number systems is the number line, a geometric representa-
tion of numbers that gives each number a unique point on the line and an
oriented distance from the origin, depicting its magnitude and direction.
Although it may be difficult to learn, the number line gives a unified geo-
metric representation of integers and rational numbers within the real num-
ber system, later to be encountered in geometry, algebra, and calculus.  The
geometric models of operations afforded by the number line apply uniformly
to all real numbers, thus presenting one unified number system.  The number
line may become particularly useful as students are learning about integers
and rational numbers, for it may help students develop a sense of the magni-
tudes and relationships of those numbers in a way that is less clear in other
representations:

• Because it can serve as a tool for simultaneously representing whole
numbers, integers, and rational numbers, teachers and researchers should
explore effective uses of the number line representation when students learn
about operations with numbers, relations among number systems, and more
formal symbolic representations of numbers.

Expanding the Number Domain

Students currently encounter the expansion of the number domain by
starting with whole numbers, gradually incorporating fractions, and only much
later expanding the domain to include negative integers and irrational
numbers.  That sequence has a long history, but there are arguments for an
alternative.  For example, expanding the whole numbers to take in the nega-
tive integers in the early grades would allow students to do more with addi-
tion and subtraction before venturing into the rational number system, which
requires multiplication and division.  Systematic study of this alternative is
needed:

• Teachers, curriculum developers, and researchers should explore the
possibility of introducing integers before rational numbers.  Ways to engage
younger children in meaningful uses of negative integers should be devel-
oped and tested.
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Developing Algebraic Thinking

The formal study of algebra is both the gateway into advanced math-
ematics and a stumbling block for many students.  The transition from arith-
metic to algebra is often not an easy one.  The difficulties associated with the
transition from the activities typically associated with school arithmetic to
those typically associated with school algebra (representational activities, trans-
formational activities, and generalizing and justifying activities) have been
extensively studied.  Research has documented that the visual and numeri-
cal supports provided for symbolic expressions by computers and graphing
calculators help students create meaning for expressions and equations.  The
research, however, has shed less light on the long-term acquisition and reten-
tion of transformational fluency.  Although through generalizing and justify-
ing, students can learn to use and appreciate algebraic expressions as general
statements, more research is need on how students develop such awareness.

The study of algebra, however, does not have to begin with a formal course
in the subject.  New lines of research and development are focusing on ways
that the elementary and middle school curriculum can be used to support the
development of algebraic reasoning.  These efforts attempt to avoid the dif-
ficulties many students now experience and to lay a better foundation for
secondary school mathematics.  We believe that from the earliest grades of
elementary school, students can be acquiring the rudiments of algebra, par-
ticularly its representational aspects and the notion of variable and function.
By emphasizing both the relationships among quantities and ways of repre-
senting these relationships, instruction can introduce students to the basic
ideas of algebra as a generalization of arithmetic.  They can come to value the
roles of definitions and see how the laws of arithmetic can be expressed alge-
braically and be used to support their reasoning.  We recommend that algebra
be explicitly connected to number in grades pre-K–8:

• The basic ideas of algebra as generalized arithmetic should be
anticipated by activities in the early elementary grades and learned by the
end of middle school.

• Teachers and researchers should investigate the effectiveness of
instructional strategies in grades pre-K–8 that would help students move
from arithmetic to algebraic ways of thinking.
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Promoting Algebra for All

In some countries by the end of eighth grade, all students have been
studying algebra for several years, although not ordinarily in a separate course.
“Algebra for all” is a worthwhile and attainable goal for middle school stu-
dents.  In the United States, however, some efforts to promote algebra for all
have involved simply offering a standard first-year algebra course (algebra
through quadratics) to everyone.  We believe such efforts are virtually guar-
anteed to result in many students failing to develop proficiency in algebra, in
part because the transition to algebra is so abrupt.  Instead, a different cur-
riculum is needed for algebra in middle school:

• Teachers, researchers, and curriculum developers should explore
ways to offer a middle school curriculum in which algebraic ideas are devel-
oped in a robust way and connected to the rest of mathematics.

Using Technology to Learn Algebra

Research has shown that instruction that makes productive use of com-
puter and calculator technology has beneficial effects on understanding and
learning algebraic representation.  It is not clear, however, what role the newer
symbol manipulation technologies might play in developing proficiency with
the transformational aspects of algebra.  We recommend the following:

• Research should be conducted on the effects on students’ learning of
using the symbol-manipulating capacities of calculators and computers to
study algebraic concepts and to transform algebraic expressions and equa-
tions.

Solving Problems as a Context for Learning

An important part of our conception of mathematical proficiency involves
the ability to formulate and solve problems coming from daily life or other
domains, including mathematics itself.  That ability is not being developed
well in U.S. pre-K to grade 8 classrooms.  Studies in almost every domain of
mathematics have demonstrated that problem solving provides an important
context in which students can learn about number and other mathematical
topics.

Problem-solving ability is enhanced when students have opportunities
to solve problems themselves and to see problems being solved.  Further,
problem solving can provide the site for learning new concepts and for prac-
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ticing learned skills.  We believe problem solving is vital because it calls on
all strands of proficiency, thus increasing the chances of students integrating
them.  Problem solving also provides opportunities for teachers to assess stu-
dents’ performance on all of the strands.  Other activities, such as listening to
an explanation or practicing solution methods, can help develop specific
strands of proficiency, but too much emphasis on them, to the exclusion of
solving problems, may give a one-sided character to learning and inhibit the
formation of connections among the strands.  We see problem solving as cen-
tral to school mathematics:

• Problem solving should be the site in which all of the strands of math-
ematics proficiency converge.  It should provide opportunities for students to
weave together the strands of proficiency and for teachers to assess students’
performance on all of the strands.

Improving Materials for Instruction

Analyses of the U.S. curriculum reveal much repetition from grade to
grade and many topics, few of which are treated in much depth.  Further,
instructional materials in pre-K to grade 8 mathematics seldom provide the
guidance and assistance that teachers in other countries find helpful, such as
discussions of children’s typical misconceptions or alternative solution
methods.  How teachers might understand and use instructional materials to
help students develop mathematical proficiency is not well understood.  On
the basis of our reasoned judgment, we offer the following recommendations
for improving instructional materials in school mathematics:

• Textbooks and other instructional materials should develop the core
content of school mathematics in a focused way, in depth, and with continu-
ity in and across grades, supporting all strands of mathematical proficiency.

• Textbooks and other instructional materials should support teacher
understanding of mathematical concepts, of student thinking and student
errors, and of effective pedagogical supports and techniques.

• Activities and strategies should be developed and incorporated into
instructional materials to assist teachers in helping all students become
proficient in mathematics, including students low in socio-economic status,
English language learners, special education students, and students with a
special interest or talent in mathematics.
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• Efforts to develop textbooks and other instructional materials should
include research into how teachers can understand and use those materials
effectively.

• A government agency or research foundation should fund an inde-
pendent group to analyze textbooks and other instructional materials for the
extent to which they promote mathematical proficiency.  The group should
recommend how these materials might be modified to promote greater math-
ematical proficiency.

Giving Time to Instruction

Research indicates that a key requirement for developing proficiency is
the opportunity to learn.  In many U.S. elementary and middle school class-
rooms, students are not engaged in sustained study of mathematics.  On some
days in some classes they are spending little or no time at all on the subject.
Mathematical proficiency as we have defined it cannot be developed unless
regular time (say, one hour each school day) is allocated to and used for math-
ematics instruction in every grade of elementary and middle school.  Further,
we believe the strands of proficiency will not develop in a coordinated fash-
ion unless continual attention is given to every strand.  The following recom-
mendation expresses our concern that mathematics be given its rightful place
in the curriculum:

• Substantial time should be devoted to mathematics instruction each
school day, with enough time devoted to each unit and topic to enable stu-
dents to develop understanding of the concepts and procedures involved.  Time
should be apportioned so that all strands of mathematical proficiency together
receive adequate attention.

Giving Students Time to Practice

Practice is important in the development of mathematical proficiency.
When students have multiple opportunities to use the computational proce-
dures, reasoning processes, and problem-solving strategies they are learning,
the methods they are using become smoother, more reliable, and better under-
stood.  Practice alone does not suffice; it needs to be built on understanding
and accompanied by feedback.  In fact, premature practice has been shown
to be harmful.  The following recommendation reflects our view of the role
of practice:
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• Practice should be used with feedback to support all strands of math-
ematical proficiency and not just procedural fluency.  In particular, practice
on computational procedures should be designed to build on and extend under-
standing.

Using Assessment Effectively

At present, substantial time every year is taken away from mathematics
instruction in U.S. classrooms to prepare for and take externally mandated
assessments, usually in the form of tests.  Often, those tests are not well
articulated with the mathematics curriculum, testing content that has not been
taught during the year or that is not central to the development of math-
ematical proficiency.  Preparation for such tests, moreover, does not ordinarily
focus on the development of proficiency.  Instead, much time is given to
practicing calculation procedures and reviewing a multitude of topics.  Teachers
and students often waste valuable learning time because they are not informed
about the content to be tested or the form that test items will take.

We believe that assessment, whether externally mandated or developed
by the teacher, should support the development of students’ mathematical
proficiency.  It needs to provide opportunities for students to learn rather
than taking time away from their learning.  Assessments in which students
are learning as well as showing what they have already learned can provide
valuable information to teachers, schools, districts, and states, as well as the
students themselves.  Such assessments help teachers modify their instruc-
tion to support better learning at each grade level.

Time and money spent on assessment need to be used more effectively
so that students have the opportunity to show what they know and can do.
Teachers need to receive timely and detailed information about students’
performance on each external assessment.  In that way, students and teachers
alike can learn from assessments instead of having assessments used only to
rank students, teachers, or schools.  The following recommendations will help
make assessment more effective in developing mathematical proficiency:

• Assessment, whether internal or external, should be focused on the
development and achievement of mathematical proficiency.  In particular,
assessments used to determine qualification for state and federal funding
should reflect the definition of mathematics proficiency presented in this
report.
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• Information about the content and form of each external assessment
should be provided so that teachers and students can prepare appropriately
and efficiently.

• The results of each external assessment should be reported so as to
provide feedback useful for teachers and learners rather than simply a set of
rankings.

• A government agency or research foundation should fund an inde-
pendent group to analyze external assessment programs for the extent to which
they promote mathematical proficiency.  The group should recommend how
programs might be modified to promote greater mathematical proficiency.

Instruction

Effective teaching—teaching that fosters the development of mathe-
matical proficiency over time—can take a variety of forms.  Consequently,
we endorse no single approach.  All forms of instruction configure relations
among teachers, students, and content.  The quality of instruction is a func-
tion of teachers’ knowledge and use of mathematical content, teachers’
attention to and handling of students, and students’ engagement in and use
of mathematical tasks.  The development of mathematical proficiency requires
thoughtful planning, careful execution, and continual improvement of instruc-
tion.  It depends critically on teachers who understand mathematics, how
students learn, and the classroom practices that support that learning.  They
also need to know their students: who they are, what their backgrounds are,
and what they know.

Planning for Instruction

Planning, whether for one lesson or a year, is often viewed as routine and
straightforward.  However, plans seldom elaborate the content that the stu-
dents are to learn or develop good maps of paths to take to reach learning
goals.  We believe that planning needs to reflect a deep and thorough consid-
eration of the mathematical content of a lesson and of students’ thinking and
learning.  Instructional materials need to support teachers in their planning,
and teachers need to have time to plan.  Instruction needs to be planned with
the development of mathematical proficiency in mind:
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• Content, representations, tasks, and materials should be chosen so
as to develop all five strands of proficiency toward the big ideas of math-
ematics and the goals for instruction.

• Planning for instruction should take into account what students
know, and instruction should provide ways of ascertaining what students
know and think as well as their interests and needs.

• Rather than simply listing problems and exercises, teachers should
plan for instruction by focusing on the learning goals for their students, keep-
ing in mind how the goals for each lesson fit with those of past and future
lessons.  Their planning should anticipate the events in the lesson, the ways
in which the students will respond, and how those responses can be used to
further the lesson goals.

Managing Classroom Discourse

Mathematics classrooms are more likely to be places in which mathematical
proficiency develops when they are communities of learners and not collec-
tions of isolated individuals.  Research on creating classrooms that function
as communities of learners has identified several important features of these
classrooms: ideas and methods are valued, students have autonomy in choos-
ing and sharing solution methods, mistakes are valued as sites of learning for
everyone, and the authority for correctness lies in logic and the structure of
the subject, not in the teacher.  In such classrooms the teacher plays a key
role as the orchestrator of the discourse students engage in about mathematical
ideas.  Teachers are responsible for moving the mathematics along while
affording students opportunities to offer solutions, make claims, answer ques-
tions, and provide explanations to their peers.  Teachers need to help bring a
mathematical discussion to a close, making sure that gaps have been filled
and errors addressed.  To develop mathematical proficiency, we believe that
students require more than just the demonstration of procedures.  They need
experience in investigating mathematical properties, justifying solution
methods, and analyzing problem situations.  We recommend the following:

• A significant amount of class time should be spent in developing math-
ematical ideas and methods rather than only practicing skills.
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• Questioning and discussion should elicit students’ thinking and solu-
tion strategies and should build on them, leading to greater clarity and
precision.

• Discourse should not be confined to answers only but should include
discussion of connections to other problems, alternative representations and
solution methods, the nature of justification and argumentation, and the like.

Linking Experience to Abstraction

Students acquire higher levels of mathematical proficiency when they
have opportunities to use mathematics to solve significant problems as well
as to learn the key concepts and procedures of that mathematics.  Although
mathematics gains power and generality through abstraction, it finds both its
sources and applications in concrete settings, where it is made meaningful to
the learner.  There is an inevitable dialectic between concrete and abstract in
which each helps shape the other.  Exhortations to “begin with the concrete”
need to consider carefully what is meant by concrete.  Research reveals that
various kinds of physical materials commonly used to help children learn
mathematics are often no more concrete to them than symbols on paper might
be.  Concrete is not the same as physical.  Learning begins with the concrete
when meaningful items in the child’s immediate experience are used as scaf-
folding with which to erect abstract ideas.  To ensure that progress is made
toward mathematical abstraction, we recommend the following:

• Links among written and oral mathematical expressions, concrete
problem settings, and students’ solution methods should be continually and
explicitly made during school mathematics instruction.

Assigning Independent Work

Part of becoming proficient in mathematics is becoming an independent
learner.  For that purpose, many teachers give homework.  The limited research
on homework in mathematics has been confined to investigations of the rela-
tion between the quantity of homework assigned and students’ achievement
test scores.  Neither the quality nor the function of homework has been stud-
ied.  Homework can have different purposes.  For example, it might be used
to practice skills or to prepare the student for the next lesson.  We believe
that independent work serves several useful purposes.  Regarding indepen-
dence and homework, we make the following recommendations:
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• Students should be provided opportunities to work independently of
the teacher both individually and in pairs or groups.

• When homework is assigned for the purpose of developing skill, stu-
dents should be sufficiently familiar with the skill and the tasks so that they
are not practicing incorrect procedures.

Using Calculators and Computers

In the discussion above, we mention the special role that calculators and
computers can play in learning algebra.  But they have many other roles to
play throughout instruction in grades pre-K–8.  Using calculators and com-
puters does not replace the need for fluency with other methods.  Confronted
with a complex arithmetic problem, students can use calculators and com-
puters to see beyond tedious calculations to the strategies needed to solve
the problem.  Technology can relieve the computational burden and free
working memory for higher-level thinking so that there can be a sharper focus
on an important idea.  Further, skillfully planned calculator investigations
may reveal subtle or interesting mathematical ideas, such as the rules for order
of operations.

A large number of empirical studies of calculator use, including long-
term studies, have generally shown that the use of calculators does not threaten
the development of basic skills and that it can enhance conceptual under-
standing, strategic competence, and disposition toward mathematics.  For
example, students who use calculators tend to show improved conceptual
understanding, greater ability to choose the correct operation, and greater
skill in estimation and mental arithmetic without a loss of basic computa-
tional skills.  They are also familiar with a wider range of numbers than stu-
dents who do not use calculators and are better able to tackle realistic math-
ematics problems.

Just like any instructional tool, calculators and computers can be used
more or less effectively.  Our concern is that, when computing technology is
used, it needs to contribute positively:

• In all grades of elementary and middle school, any use of calculators
and computers should be done in ways that help develop all strands of stu-
dents’ mathematical proficiency.
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Teacher Preparation and
Professional Development

One critical component of any plan to improve mathematics learning is
the preparation and professional development of teachers.  If the goal of math-
ematical proficiency as portrayed in this report is to be reached by all students
in grades pre-K to 8, their teachers will need to understand and practice tech-
niques of teaching for that proficiency.  Our view of mathematics proficiency
requires teachers to act in new ways and to have understanding that they
once were not expected to have.  In particular, it is not a teacher’s fault that
he or she does not know enough to teach in the way we are asking.  It is a far
from trivial task to acquire such understanding—something that cannot rea-
sonably be expected to happen in one’s spare time and something that will
require major policy changes to support and promote.  Teacher preparation
and professional development programs will need to develop proficiency in
mathematics teaching, which has many parallels to proficiency in mathematics.

Developing Specialized Knowledge

The knowledge required to teach mathematics well is specialized knowl-
edge.  It includes an integrated knowledge of mathematics, knowledge of the
development of students’ mathematical understanding, and a repertoire of
pedagogical practices that take into account the mathematics being taught
and the students learning it.  The evidence indicates that these forms of knowl-
edge are not acquired in conventional undergraduate mathematics courses,
whether they are general survey courses or specialized courses for mathematics
majors.  The implications for teacher preparation and professional develop-
ment are that teachers need to learn these forms of knowledge in ways that
help them forge connections.

Mathematical knowledge is a critical resource for teaching.  Therefore,
teacher preparation and professional development must provide significant
and continuing opportunities for teachers to develop profound and useful
mathematical knowledge.  Teachers need to know the mathematics of the
curriculum and where the curriculum is headed.  They need to understand
the connections among mathematical ideas and how they develop.  Teachers
also need to be able to unpack mathematical content and make visible to
students the ideas behind the concepts and procedures.  Finally, teachers
need not only mathematical proficiency but also the ability to use it in guid-
ing discussions, modifying problems, and making decisions about what mat-
ters to pursue in class and what to let drop.  Very few teachers currently have
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the specialized knowledge needed to teach mathematics in the way envi-
sioned in this report.  Although it is not reasonable in the short term to expect
all teachers to acquire such knowledge, every school needs access to exper-
tise in mathematics teaching.

Teachers’ opportunities to learn can help them develop their own knowl-
edge about mathematics, about children’s thinking about mathematics, and
about mathematics teaching.  Such opportunities can also help teachers learn
how to solve the sorts of problems that are central to the practice of teaching.
The following recommendations reflect our judgment concerning the spe-
cialized knowledge that teachers need:

• Teachers of grades pre-K–8 should have a deep understanding of the
mathematics of the school curriculum and the principles behind it.

• Programs and courses that emphasize “classroom mathematical
knowledge” should be established specifically to prepare teachers to teach
mathematics to students in such grades as pre-K–2, 3–5, and 6–8.

• Teachers should learn how children’s mathematical knowledge
develops and what their students are likely to bring with them to school.

• To provide a basis for continued learning by teachers, their prepa-
ration to teach, their professional development activities, and the instruc-
tional materials they use should engage them, individually and collectively,
in developing a greater understanding of mathematics and of student thinking
and in finding ways to put that understanding into practice.  All teachers,
whether preservice or inservice, should engage in inquiry as part of their
teaching practice (e.g., by interacting with students and analyzing their
work).

• Through their preparation and professional development, teachers
should develop a repertoire of pedagogical techniques and the ability to use
those techniques to accomplish lesson goals.

• Mathematics specialists—teachers who have special training and
interest in mathematics—should be available in every elementary school.
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Working Together

Elementary and middle school teachers in the United States report spend-
ing relatively little time, compared with their counterparts in other countries,
discussing the mathematics they are teaching or the methods they are using.
They seldom plan lessons together, observe one another teach, or analyze
students’ work collectively.  Studies of programs that require teachers to teach
mathematically demanding curricula suggest that success is greater when
teachers help one another not only learn the mathematics and learn about
student thinking but also practice new teaching strategies.  Our recommenda-
tion concerning time is not just about how much is available but how it is used:

• Teachers should be provided with more time for planning and con-
ferring with each other on mathematics instruction with appropriate sup-
port and guidance.

Capitalizing on Professional Meetings

Teachers need more mathematically focused opportunities to learn math-
ematics, and they need to be prepared to manage changes in the field.  Math-
ematics teachers already come together at meetings of professional societies
such as the National Council of Teachers of Mathematics (NCTM), its affili-
ated groups, or other organizations.  These occasions can provide opportuni-
ties for professional development of the sort discussed above.  For example,
portions of national or regional meetings of the NCTM could be organized
into minicourses or institutes, without competing sessions being held at the
same time.  Professional development needs to grow out of current activities:

• Professional meetings and other occasions when teachers come together
to work on their practice should be used as opportunities for more serious
and substantive professional development than has commonly been available.

Sustaining Professional Development

Preparing to teach is a career-long activity.  Teachers need to continue to
learn.  But rather than being focused on isolated facts and skills, teacher learn-
ing needs to be generative.  That is, what teachers learn needs to serve as a
basis for them to continue to learn from their practice.  They need to see that
practice as demanding continual review, analysis, and improvement.  Studies
of teacher change indicate that short-term, fragmented professional develop-
ment is ineffective for developing teaching proficiency.
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More resources of all types—money, time, leadership, attention—need
to be invested in professional development for teachers of mathematics, and
those resources already available could be used more wisely and productively.
Each year a substantial amount of money is invested in professional develop-
ment programs for teachers.  Individual schools and districts fund some pro-
grams locally.  Others are sponsored and funded by state agencies, federal
agencies, or professional organizations.  Much of the time and money invested
in such programs, however, is not used effectively.  Sponsors generally fund
short-term, even one-shot, activities such as daylong workshops or two-day
institutes that collectively do not form a cohesive and cumulative program of
professional development.  Furthermore, these activities are often conducted
by an array of professional developers with minimal qualifications in math-
ematics and mathematics teaching.  Professional development in mathematics
needs to be sustained over time that is measured in years, not weeks or months,
and it needs to involve a substantial amount of time each year.  Our recom-
mendations to raise the level of professional development are as follows:

• Local education authorities should give teachers support, including
stipends and released time, for sustained professional development.

• Providers of professional development should know mathematics and
should know about students’ mathematical thinking, how mathematics is
taught, and teachers’ thinking about mathematics and their own practice.

• Organizations and agencies that fund professional development in
mathematics should focus resources on multi-year, coherent programs.
Resources of agencies at every level should be marshaled to support substan-
tial and sustained professional development.

Monitoring Progress Toward
Mathematical Proficiency

In this report we have set forth a variety of observations, conclusions, and
recommendations that are designed to bring greater coherence and balance
to the learning and teaching of mathematics.  In particular, we have described
five strands of mathematical proficiency that should frame all efforts to improve
school mathematics.

Over the past decades, various visions have been put forward for improv-
ing curriculum, instruction, and assessment in mathematics, and many of those
ideas have been tried in schools.  Unfortunately, new programs are tried but
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then abandoned before their effectiveness has been well tested, and lessons
learned from program evaluations are often lost.  Although aspects of math-
ematics proficiency have been studied, other aspects such as productive dis-
position have received less attention; and no one, including the National
Assessment of Educational Progress (NAEP), has studied the integrated por-
trait of mathematics proficiency set forth in this report.  In order that efforts
to improve U.S. school mathematics might be more cumulative and coordi-
nated, we make the following recommendation:

• An independent group of recognized standing should be constituted to
assess the progress made in meeting the goal of mathematical proficiency for
all U.S. schoolchildren.

Supporting the Development of
Mathematical Proficiency

The mathematics students need to learn today is not the same math-
ematics that their parents and grandparents needed to learn.  Moreover, math-
ematics is a domain no longer limited to a select few.  All students need to be
mathematically proficient to the levels discussed in this report.  The math-
ematics of grades pre-K–8 today involves much more than speed in pencil-
and-paper arithmetic.  Students need to understand mathematics, use it to
solve problems, reason logically, compute fluently, and use it to make sense
of their world.  For that to happen, each student will need to develop the
strands of proficiency in an integrated fashion.

No country—not even those performing highest on international surveys
of mathematics achievement—has attained the goal of mathematical profi-
ciency for all its students.  It is an extremely ambitious goal, and the United
States will never reach it by continuing to tinker with the controls of educa-
tional policy, pushing one button at a time.  Adopting mathematics textbooks
from other countries, testing teachers, holding students back a grade, putting
schools under state sanctions—none of these alone will advance school math-
ematics very far toward mathematical proficiency for all.  Instead, coordi-
nated, systematic, and sustained modifications will need to be made in how
school mathematics instruction has commonly proceeded, and support of new
and different kinds will be required.  Leadership and attention to the teach-
ing of mathematics are needed in the formulation and implementation of
policies at all levels of the educational system.
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ber of the Conference Board’s Council of Financial Executives (1990–1998).
He is a trustee emeritus of Brown University and a past chairman and life
member of the Dean’s Advisory Council at Chicago Business School.  Robinson
is current Past President of the Dallas Zoological Society and the Vogel Alcove
Childcare Center for the Homeless, a project of the Dallas Jewish Coalition.
He is a member of the boards of the Dallas Symphony, the Dallas Theater
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Center, the Greenwall Foundation, and the American Trust for the British
Library.

Hung-Hsi Wu is Professor of Mathematics at the University of California,
Berkeley.  His area of expertise is real and complex geometry.  He received
his A.B. from Columbia University and his Ph.D. from the Massachusetts
Institute of Technology.  He has authored several articles on mathematics
education and is also a technical reviewer of the 1999 California Mathematics
Framework.  Almost all his writings in education can be found on his
homepage: <http://www.math.berkeley.edu/~wu/>.
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